aboutsummaryrefslogtreecommitdiffstats
path: root/python/parse_emails.py
blob: a0d41dfb936c5018ad38daa8684f6b3ff64e95f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import pandas as pd
import re
import os
import pdb
from db import dbconn
import psycopg2.sql as sql
from download_emails import save_emails
import datetime
import logging
import pickle
import sys
from quantlib.time.imm import next_date
from quantlib.time.api import Date, pydate_from_qldate

logging.basicConfig(filename=os.path.join(os.getenv("LOG_DIR"), 'emails_parsing.log'),
                    level=logging.WARNING,
                    format='%(asctime)s %(message)s')

def list_imm_dates(date):
    d = Date.from_datetime(date)
    r = []
    for i in range(10):
        d = next_date(d, False)
        r.append(pydate_from_qldate(d))
    return r

def makedf(r, indextype, quote_source):
    if indextype=='IG':
        cols = ['strike', 'rec_bid', 'rec_offer', 'delta_rec', 'pay_bid',
                'pay_offer', 'delta_pay', 'vol']
    else:
        cols = ['strike', 'rec_bid', 'rec_offer', 'delta_rec', 'pay_bid',
                'pay_offer', 'delta_pay', 'vol', 'price_vol']
    if quote_source == "BAML":
        cols.append('gamma')
    if quote_source == "GS":
        cols.append("tail")
    df = pd.DataFrame.from_records(r, columns = cols)
    for col in ['delta_rec', 'delta_pay', 'vol', 'price_vol', 'gamma', 'tail']:
        if col in df:
            df[col] = df[col].str.strip("%").astype('float')/100
    if quote_source == "GS":
        for col in ["pay_bid", "pay_offer", "rec_bid", "rec_offer"]:
            df[col] = df[col].str.strip('-')
        df['delta_pay'] *= -1
    for k in df:
        if df.dtypes[k] == 'object':
            try:
                df[k] = pd.to_numeric(df[k])
            except ValueError:
                pdb.set_trace()
    df['quote_source'] = quote_source
    df.set_index('strike', inplace=True)
    return df

def parse_quotedate(fh, date_received):
    for line in fh:
        line = line.rstrip()
        if "At:" in line:
            for p in ['%m/%d/%y %H:%M:%S', '%b  %d %Y %H:%M:%S', '%m/%d  %H:%M:%S']:
                try:
                    quotedate = pd.to_datetime(line, format=p, exact=False)
                except ValueError:
                    continue
                else:
                    if quotedate.year == 1900: # p='%m/%d  %H:%M:%S'
                        quotedate = quotedate.replace(year=date_received.year)
                    break
            else:
                raise RuntimeError("can't parse date")
            return quotedate

def parse_refline(line):
    regex = "Ref:(?P<ref>\S+)\s+(?:Fwd Px:(?P<fwdprice>\S+)\s+)?" \
                    "Fwd(?: Spd)?:(?P<fwdspread>\S+)\s+Fwd Bpv:(?P<fwdbpv>\S+)" \
                    "\s+Expiry:(?P<expiry>\S+)"
    m = re.match(regex, line)
    try:
        d = m.groupdict()
        d['expiry'] = pd.to_datetime(d['expiry'], format='%d-%b-%y')
    except AttributeError:
        logging.error("something wrong with " + fh.name)
    return d

def parse_baml(fh, indextype, series, quotedate, *args):
    option_stack = {}
    fwd_index = []
    line = ""
    while True:
        if line == "":
            try:
                line = next(fh)
            except StopIteration:
                break
        if line.startswith("Ref"):
            d = parse_refline(line)
            d.update({'quotedate': quotedate, 'index': indextype, 'series': series})
            df, line = parse_baml_block(fh, indextype)
            option_stack[d['expiry']] = df
            fwd_index.append(d)
        else:
            line = ""
    if option_stack:
        fwd_index = pd.DataFrame.from_records(fwd_index,
                                              index='quotedate')
        return option_stack, fwd_index
    else:
        raise RuntimeError("empty email: " + fh.name)

def parse_baml_block(fh, indextype):
    next(fh) ## skip header
    r = []
    line = ""
    for line in fh:
        line = line.strip()
        if line.startswith("Ref") or line == "":
            break
        line = re.sub("[/|]", " ", line)
        vals = re.sub(" +", " ", line).rstrip().split(" ")
        if len(vals) < 3: ## something went wrong
            line = ""
            break
        r.append(vals)
    return makedf(r, indextype, "BAML"), line

def parse_ms_block(fh, indextype):
    next(fh) ## skip header
    r = []
    for line in fh:
        line = line.rstrip()
        if line == "":
            break
        strike, payer, receiver, vol = line.split("|")
        strike = strike.strip()
        if indextype == "HY":
            strike = strike.split()[0]
        pay_bid, pay_offer, pay_delta = payer.strip().split()
        rec_bid, rec_offer, rec_delta = receiver.strip().split()

        vals = [strike, rec_bid, rec_offer, rec_delta,
                pay_bid, pay_offer, pay_delta]
        vol = vol.strip()
        if indextype == "HY":
            try:
                price_vol, vol = vol.replace("[","").replace("]","").split()
            except ValueError:
                price_vol, vol, vol_change, be = vol.replace("[","").replace("]","").split()
            vals += [vol, price_vol]
        else:
            if " " in vol:
                vol, vol_change, be = vol.split()
            vals += [vol]
        r.append(vals)
    return makedf(r, indextype, "MS")

def parse_nomura_block(fh, indextype):
    next(fh) ## skip header
    r = []
    for line in fh:
        line = line.rstrip()
        if "EXPIRY" in line or line == "":
            break
        strike, receiver, payer, vol, _ = line.split("|", 4)
        strike = strike.strip()
        pay, pay_delta = payer.strip().split()
        rec, rec_delta = receiver.strip().split()
        pay_bid, pay_offer = pay.split("/")
        rec_bid, rec_offer = rec.split("/")
        vol = vol.strip()
        vals = [strike, rec_bid, rec_offer, rec_delta,
                pay_bid, pay_offer, pay_delta, vol]
        if indextype == "HY": # we don't have price vol
            vals.append(None)
        r.append(vals)
    else:
        return None, makedf(r, indextype, "NOM")
    return line, makedf(r, indextype, "NOM")

def parse_sg_block(fh, indextype, expiration_dates):
    r = []
    for line in fh:
        line = line.rstrip()
        if line == "":
            break
        if indextype == "IG":
            option_type, strike, price, delta, vol, expiry = line.split()
        else:
            option_type, strike, strike_spread, price, delta, vol, expiry = line.split()

        expiry_month = datetime.datetime.strptime(expiry, "%b-%y").month
        expiry = next(pd.Timestamp(d) for d in expiration_dates if d.month == expiry_month)
        if option_type == "Rec":
            rec_bid, rec_offer = price.split("/")
            pay_bid, pay_offer = None, None
            rec_delta, pay_delta = delta, None
        else:
            pay_bid, pay_offer = price.split("/")
            rec_bid, rec_offer = None, None
            rec_delta, pay_delta = None, delta
        vals = [strike, rec_bid, rec_offer, rec_delta, pay_bid,
                pay_offer, pay_delta, vol]
        if indextype == "HY":
            vals.append(None)
        r.append(vals)
    return expiry, makedf(r, indextype, "SG")

def parse_gs_block(fh, indextype):
    next(fh)
    r = []
    for line in fh:
        line = line.rstrip()
        if line == "":
            break
        vals = line.split()
        if indextype=='HY':
            vals.pop(2)
            vals.pop(9)
        else:
            vals.pop(1)
            vals.pop(8)
        strike = vals.pop(0)
        if indextype == "HY":
            vals.pop(0) #pop the spread
        pay, pay_delta = vals[:2]
        pay_bid, pay_offer = pay.split("/")
        rec_bid, rec_offer = vals[2].split("/")
        vol = vals[3]
        tail = vals[6]
        vals = [strike, rec_bid, rec_offer, None, pay_bid, pay_offer, pay_delta, vol]
        if indextype == "HY":
            vals.append(None)
        vals.append(tail)
        r.append(vals)
    return makedf(r, indextype, "GS")

def parse_ms(fh, indextype, *args):
    option_stack = {}
    for line in fh:
        line = line.rstrip()
        if "EXPIRY" in line:
            expiry = line.split(" ")[1]
            expiry = pd.to_datetime(expiry, format="%d-%b-%Y")
            option_stack[expiry] = parse_ms_block(fh, indextype)
    return option_stack

def parse_nomura(fh, indextype, *args):
    option_stack = {}
    def aux(line, fh, indextype, option_stack):
        expiry = line.split(" ")[0]
        expiry = pd.to_datetime(expiry, format="%d-%b-%y")
        next_line, df = parse_nomura_block(fh, indextype)
        option_stack[expiry] = df
        if next_line:
            if "EXPIRY" in next_line:
                aux(next_line, fh, indextype, option_stack)
            else:
                raise RuntimeError("Don't know what to do with {}:".format(line))
    for line in fh:
        line = line.rstrip()
        if "EXPIRY" in line:
            aux(line, fh, indextype, option_stack)
    return option_stack

def parse_sg(fh, indextype, expiration_dates):
    option_stack = {}
    fwd_index = []
    for line in fh:
        line = line.rstrip()
        if line.startswith("Type"):
            expiry, df = parse_sg_block(fh, indextype, expiration_dates)
            option_stack[expiry] = df
    return option_stack

def parse_gs(fh, indextype, series, quotedate, ref):
    option_stack = {}
    fwd_index = []
    d = {'quotedate': quotedate, 'index': indextype,
         'series': series, 'ref': ref}
    for line in fh:
        line = line.rstrip()
        if line.startswith("Expiry"):
            m = re.match("Expiry (\d{2}\w{3}\d{2}) \((?:([\S]+) )?([\S]+)\)", line)
            if m:
                expiry, fwdprice, fwdspread = m.groups()
                expiry = pd.to_datetime(expiry, format='%d%b%y')
                d.update({'fwdspread': fwdspread, 'fwdprice': fwdprice,
                          'expiry': expiry})
                fwd_index.append(d.copy())
                option_stack[expiry] = parse_gs_block(fh, indextype)
            else:
                logging.error("Can't parse expiry line:", line)
    fwd_index = pd.DataFrame.from_records(fwd_index,
                                          index='quotedate')
    return option_stack, fwd_index

subject_baml = re.compile("(?:Fwd:){0,2}(?:BAML )?(\w{2})([0-9]{1,2})\s")
subject_ms = re.compile("[^$]*\$\$ MS CDX OPTIONS: (IG|HY)(\d{2})[^-]*- REF[^\d]*([\d.]+)")
subject_nomura = re.compile("(?:Fwd:)?CDX (IG|HY)(\d{2}).*- REF:[^\d]*([\d.]+)")
subject_gs = re.compile("GS (IG|HY)(\d{2}) 5y.*- Ref [^\d]*([\d.]+)")
subject_sg = re.compile("SG OPTIONS - CDX (IG|HY) S(\d{2}).* REF[^\d]*([\d.]+)")

def parse_email(email, date_received):
    with open(email.path, "rt") as fh:
        subject = next(fh)
        for source in ['BAML', 'MS', 'NOMURA', 'GS', 'SG']:
            m = globals()['subject_'+source.lower()].match(subject)
            if m:
                if source == 'BAML':
                    indextype, series = m.groups()
                else:
                    indextype, series, ref = m.groups()
                    ref = float(ref)
                series = int(series)
                quotedate = parse_quotedate(fh, date_received)
                if quotedate is None:
                    print(email.path)
                    continue
                expiration_dates = list_imm_dates(quotedate)
                parse_fun = globals()['parse_'+source.lower()]
                if source == 'BAML':
                    return (quotedate, indextype, series), \
                        parse_fun(fh, indextype, series, quotedate)
                elif source == "GS":
                    return (quotedate, indextype, series), \
                        parse_fun(fh, indextype, series, quotedate, ref)
                else:
                    option_stack = parse_fun(fh, indextype, expiration_dates)
                    fwd_index = pd.DataFrame({'quotedate': quotedate,
                                              'ref': ref,
                                              'index': indextype,
                                              'series': series,
                                              'expiry': list(option_stack.keys())})
                    fwd_index.set_index('quotedate', inplace = True)
                    return (quotedate, indextype, series), (option_stack, fwd_index)
        else:
            raise RuntimeError("can't parse subject line: {0} for email {1}".format(
                subject, email.name))

def write_todb(swaption_stack, index_data):
    conn  = dbconn('serenitasdb')
    query = sql.SQL("INSERT INTO {}({}) VALUES({}) " \
                    "ON CONFLICT DO NOTHING")
    for df, table in zip([index_data, swaption_stack],
                         ["swaption_ref_quotes", "swaption_quotes"]):
        cols = df.columns
        sql_str = query.format(sql.Identifier(table),
                               sql.SQL(", ").join(sql.Identifier(c) for c in cols),
                               sql.SQL(", ").join(sql.Placeholder() * len(cols)))
        with conn.cursor() as c:
            c.executemany(sql_str, df.itertuples(index=False))
        conn.commit()
    conn.close()

def get_email_list(date):
    """returns a list of email file names for a given date

    Parameters
    ----------
    date : string
    """
    with open(".pickle", "rb") as fh:
        already_uploaded = pickle.load(fh)
    df = pd.DataFrame.from_dict(already_uploaded, orient='index')
    df.columns = ['quotedate']
    df = df.reset_index().set_index('quotedate')
    return df.loc[date,'index'].tolist()

def pickle_drop_date(date):
    with open(".pickle", "rb") as fh:
        already_uploaded = pickle.load(fh)
    newdict = {k: v for k, v in already_uploaded.items() if v.date() != date}
    with open(".pickle", "wb") as fh:
        pickle.dump(newdict, fh)

if __name__=="__main__":
    save_emails()
    data_dir = os.path.join(os.getenv("DATA_DIR"), "swaptions")
    emails = [f for f in os.scandir(data_dir) if f.is_file()]
    swaption_stack = {}
    index_data = pd.DataFrame()
    try:
        with open(".pickle", "rb") as fh:
            already_uploaded = pickle.load(fh)
    except FileNotFoundError:
        already_uploaded = {}
    for f in emails:
        date_received, msg_id = f.name.split("_")
        date_received = datetime.datetime.strptime(date_received, "%Y-%m-%d %H-%M-%S")
        if msg_id in already_uploaded:
            continue
        else:
            try:
                key, (option_stack, fwd_index) = parse_email(f, date_received)
            except RuntimeError as e:
                logging.error(e)
            else:
                if key[0] is None:
                    logging.error("Something wrong with email: {}".format(f.name))
                    continue
                swaption_stack[key] = pd.concat(option_stack, names=['expiry', 'strike'])
                index_data = index_data.append(fwd_index)
                already_uploaded[f.name] = key[0]
    if index_data.empty:
        sys.exit()
    for col in ['fwdbpv', 'fwdprice', 'fwdspread', 'ref']:
        if col in index_data:
            index_data[col] = index_data[col].astype('float')
    index_data['index'] = index_data['index'].astype('category')

    swaption_stack = pd.concat(swaption_stack, names=['quotedate', 'index', 'series'])
    swaption_stack = swaption_stack.reset_index()
    swaption_stack = swaption_stack.drop_duplicates(['quotedate', 'index', 'series', 'expiry', 'strike'])
    index_data = index_data.reset_index()
    index_data = index_data.drop_duplicates(['quotedate', 'index', 'series', 'expiry'])
    write_todb(swaption_stack, index_data)
    with open(".pickle", "wb") as fh:
       pickle.dump(already_uploaded, fh)