1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
import pandas as pd
import pdb
import re
with open("example") as fh:
flag = False
masterdf = {}
for line in fh:
line = line.lstrip()
if line.startswith("At"):
quotedate = pd.to_datetime(line[4:])
if line.startswith("Expiry"):
m = re.match("Expiry (\d{2}\w{3}\d{2}) \(([^\t]+) ([^t]+)\)", line)
if m:
date, fwprice, fwspread = m.groups()
date = pd.datetime.strptime(date, '%d%b%y')
continue
if line.startswith("Stk"):
flag = True
r = []
continue
if flag:
if line:
vals = re.sub(" +", " ", line).split(" ")
vals.pop(2)
vals.pop(9)
r.append(vals)
continue
else:
df = pd.DataFrame.from_records(r,
columns = ['Stk', 'Sprd', 'Pay', 'Delta', 'Rec', 'Vol',
'VolChg', 'VolBpd', 'Tail'])
df['forward'] = float(fwprice)
df['spread'] = float(fwspread)
df[['PayBid', 'PayOffer']] = df.Pay.str.split('/').apply(pd.Series)
df[['RecBid', 'RecOffer']] = df.Rec.str.split('/').apply(pd.Series)
df.drop(['Pay', 'Rec'], axis=1, inplace=True)
df = df.convert_objects(convert_numeric=True)
df.set_index('Stk', inplace=True)
masterdf[date]=df
flag = False
r = []
continue
masterdf = pd.concat(masterdf)
|