aboutsummaryrefslogtreecommitdiffstats
path: root/python/parse_gs.py
blob: 3a14b81e3ed198fbd6607edc68ad9f863ebcd207 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import pandas as pd
import pdb
import re
import os

data_dir = "/home/share/CorpCDOs/data/swaptions/GS swaptions"
all_df = {}
fwd_index = []
for index in ["IG", "HY"]:
    full_path = os.path.join(data_dir, index + " swaptions")
    for f in os.listdir(os.path.join(data_dir, index + " swaptions")):
        with open(os.path.join(full_path, f), "rb") as fh:
            flag = False
            masterdf = {}
            for line in fh:
                line = line.decode('utf-8', 'ignore')
                line = line.rstrip()
                m = re.search("(IG|HY)(\d{2}) 5y SWAPTION (?:♦GRANULAR♦ )?(?:UPDATE|CLOSES) - Ref\D+(.+)$", line)
                if m:
                    indextype = m.groups()[0]
                    series = int(m.groups()[1])
                    if indextype == 'HY':
                        refprice, refspread = map(float,
                                                  re.match("([\S]+)\s+\(([^)]+)\)", m.groups()[2]).groups())
                    else:
                        refspread = float(m.groups()[2])
                    continue
                if line.startswith("At"):
                    quotedate = pd.to_datetime(line[4:])
                    continue
                if line.startswith("Expiry"):
                    m = re.match("Expiry (\d{2}\w{3}\d{2}) \((?:([\S]+) )?([\S]+)\)", line)
                    if m:
                        date, fwprice, fwspread = m.groups()
                        date = pd.to_datetime(date, format='%d%b%y')
                    continue
                if line.startswith("Stk"):
                    flag = True
                    r = []
                    continue
                if flag:
                    if line:
                        vals = re.sub(" +", " ", line).split(" ")
                        if indextype=='HY':
                            vals.pop(2)
                            vals.pop(9)
                        else:
                            vals.pop(1)
                            vals.pop(8)
                        r.append(vals)
                        continue
                    else:
                        if indextype=='HY':
                            cols = ['Strike', 'Sprd', 'Pay', 'DeltaPay', 'Rec', 'Vol',
                                    'VolChg', 'VolBpd', 'Tail']
                        else:
                            cols = ['Strike', 'Pay', 'DeltaPay', 'Rec', 'Vol',
                                    'VolChg', 'VolBpd', 'Tail']
                        df = pd.DataFrame.from_records(r, columns = cols)

                        df[['PayBid', 'PayOffer']] = df.Pay.str.split('/', expand=True)
                        df[['RecBid', 'RecOffer']] = df.Rec.str.split('/', expand=True)
                        df.drop(['Pay', 'Rec'], axis=1, inplace=True)
                        for col in df:
                            df[col] = pd.to_numeric(df[col], errors = 'coerce')
                        df.set_index('Strike', inplace=True)
                        d = {'quotedate': quotedate,
                             'expiry': date,
                             'index': indextype,
                             'series': series,
                             'ref': refspread if indextype =="IG" else refprice}
                        if indextype == "IG":
                            d['fwdspread'] = float(fwspread)
                        else:
                            d['fwdprice'] = float(fwprice)
                        fwd_index.append(d)

                        masterdf[date] = df
                        flag = False
                        r = []
                        continue
        all_df[(quotedate, indextype, series)] = pd.concat(masterdf, names=['expiry'])
all_df = pd.concat(all_df, names = ['quotedate', 'index', 'series'])
all_df['DeltaPay'] = - all_df['DeltaPay']/100
all_df['Vol'] /= 100
index_df = pd.DataFrame(fwd_index)

all_df.reset_index(inplace=True)
all_df = all_df.rename(columns={'Strike':'strike',
                                'Vol': 'vol',
                                'PayOffer': 'pay_offer',
                                'PayBid': 'pay_bid',
                                'RecOffer': 'rec_offer',
                                'RecBid': 'rec_bid',
                                'Tail': 'tail',
                                'DeltaPay': 'delta_pay'})
del all_df['VolBpd'], all_df['VolChg']
if 'Sprd' in all_df:
    del all_df['Sprd']
all_df['quote_source'] = 'GS'
index_df = index_df.drop_duplicates(['quotedate', 'index', 'series', 'expiry'])

##insert quotes
from db import dbengine
serenitasdb = dbengine('serenitasdb')
conn = serenitasdb.raw_connection()
## first delete quotes
with conn.cursor() as c:
    c.execute("DELETE FROM swaption_quotes WHERE quote_source='GS'")
conn.commit()
all_df.to_sql('swaption_quotes', serenitasdb, if_exists='append', index=False)

sqlstr = "INSERT INTO swaption_ref_quotes(quotedate, index, series, expiry, ref, fwdprice, fwdspread) "\
         "VALUES(%(quotedate)s, %(index)s, %(series)s, %(expiry)s, %(ref)s, %(fwdprice)s, %(fwdspread)s) " \
         "ON CONFLICT DO NOTHING"
with conn.cursor() as c:
    c.executemany(sqlstr, index_df.to_dict(orient='records'))
conn.commit()
conn.close()