aboutsummaryrefslogtreecommitdiffstats
path: root/python/pnl_explain.py
blob: 360dc45f24a3d974194a87026376489ce5a5916b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas as pd
from functools import reduce
from position import get_list
from db import dbengine
from dates import bus_day, imm_dates

def pnl_explain(identifier, start_date = None, end_date = None,
                engine = dbengine("dawndb")):
    """ if start_date is None, pnl since inception"""
    trades = pd.read_sql_query("SELECT * FROM bonds where identifier=%s", engine,
                               params=(identifier,), parse_dates=['trade_date', 'settle_date'],
                               index_col=['settle_date'])
    marks = pd.read_sql_query("SELECT * FROM marks where identifier=%s", engine,
                              params=(identifier,), parse_dates = ['date'], index_col='date')
    factors = pd.read_sql_query("SELECT * FROM factors_history where identifier=%s", engine,
                                params=(identifier,), parse_dates = ['last_pay_date', 'prev_cpn_date'],
                                index_col=['last_pay_date'])

    for key in ['faceamount', 'principal_payment', 'accrued_payment']:
        trades.loc[~trades.buysell, key]  = -trades[key][~trades.buysell]

    df = (marks[['price']].join(factors, how='outer').
          join(trades[['principal_payment', 'accrued_payment', 'faceamount']], how='outer'))
    df.sort_index(inplace=True)
    if start_date is None:
        start_date = trades.index.min()
    if end_date is None:
        end_date = pd.datetime.today()
    dates = pd.date_range(start_date, end_date, freq = bus_day)
    keys1 = ['price','factor', 'coupon', 'prev_cpn_date']
    df[keys1] = df[keys1].fillna(method='ffill')
    keys2 = ['losses', 'principal','interest', 'faceamount','accrued_payment', 'principal_payment']
    df[keys2] = df[keys2].fillna(value=0)
    df.faceamount = df.faceamount.cumsum()
    keys = keys1 + ['faceamount']
    df1 = df.reindex(dates, keys, method='ffill')
    keys = ['losses', 'principal','interest', 'accrued_payment', 'principal_payment']
    df2 = df.reindex(dates, keys, fill_value=0)
    daily = pd.concat([df1, df2], axis = 1)

    daily['unrealized_pnl'] = daily.price.diff() * daily.factor.shift()/100 * daily.faceamount
    daily['realized_pnl'] = (daily.price/100*daily.factor.diff()+daily.principal/100) * daily.faceamount
    daily['clean_nav'] = daily.price/100 * daily.factor * daily.faceamount
    daily['realized_accrued'] = daily.interest/100 * daily.faceamount
    days_accrued = daily.index - daily.prev_cpn_date
    daily['accrued'] = days_accrued.dt.days/360*daily.coupon/100*daily.factor*daily.faceamount
    extra_pnl = daily.clean_nav.diff() - daily.principal_payment
    daily.loc[daily.principal_payment>0 , 'unrealized_pnl'] += extra_pnl[daily.principal_payment>0]
    daily.loc[daily.principal_payment<0, 'realized_pnl'] += extra_pnl[daily.principal_payment<0]
    daily['realized_accrued'] -= daily.accrued_payment
    daily['unrealized_accrued'] = daily.accrued.diff() + daily.realized_accrued
    return daily[['clean_nav', 'accrued', 'unrealized_pnl', 'realized_pnl', 'unrealized_accrued',
                  'realized_accrued']].iloc[1:,]

def pnl_explain_list(id_list, start_date = None, end_date = None, engine = dbengine("dawndb")):
    return {identifier: pnl_explain(identifier, start_date, end_date, engine)
            for identifier in id_list}

def cds_explain(index, series, tenor, attach = None, detach = None,
                start_date = None, end_date = None, engine = dbengine('serenitasdb')):
    if attach is None:
        quotes = pd.read_sql_query("SELECT date, (100-closeprice) AS upfront FROM index_quotes " \
                                   "WHERE index=%s AND series=%s AND tenor=%s ORDER BY date",
                                   engine, parse_dates=['date'],
                                   index_col='date', params = (index, series, tenor))
        factors = pd.read_sql_query("""
SELECT indexfactor/100 AS indexfactor, cumulativeloss/100 AS cumulativeloss
lastdate FROM index_desc WHERE index=%s AND series=%s AND tenor=%s ORDER BY lastdate
""",
                                    engine, parse_dates=['lastdate'], index_col='lastdate',
                                    params = (attach, detach, index, series, tenor))
    else:
        #we take the latest version available
        quotes = pd.read_sql_query("SELECT DISTINCT ON (quotedate) quotedate, upfront_mid AS upfront, "\
                                   "tranche_spread FROM markit_tranche_quotes " \
                                   "JOIN index_version USING (basketid) " \
                                   "WHERE index=%s AND series=%s " \
                                   "AND tenor=%s AND attach=%s AND detach=%s " \
                                   "ORDER by quotedate, version desc",
                                   engine, parse_dates=['quotedate'], index_col='quotedate',
                                   params = (index, series, tenor, attach, detach))
        factors = pd.read_sql_query("""
SELECT tranche_factor(%s::smallint, %s::smallint, indexfactor, cumulativeloss/100),
indexfactor/100 AS indexfactor, cumulativeloss/100 AS cumulativeloss, lastdate
FROM index_desc WHERE index=%s AND series=%s AND tenor=%s ORDER BY lastdate
""",
                                    "postgresql://serenitas_user@debian/serenitasdb",
                                    parse_dates=['lastdate'], index_col='lastdate',
                                    params = (attach, detach, index, series, tenor))
    if start_date is None:
        start_date = quotes.index.min()
    if end_date is None:
        end_date = pd.datetime.today()

    #we use tranche_factor
    if attach:
        factors['factor'] = factors.tranche_factor
    else:
        factors['factor'] = factors.indexfactor

    dates = pd.date_range(start_date, end_date, freq = bus_day)
    yearfrac = imm_dates(start_date, end_date)
    yearfrac = yearfrac.to_series().reindex(dates, method='ffill')
    yearfrac = yearfrac.index-yearfrac
    yearfrac = (yearfrac.dt.days+1)/360
    yearfrac.name = 'yearfrac'
    quotes = quotes.reindex(dates, method='ffill')
    recovery = -factors.indexfactor.diff()-factors.cumulativeloss.diff()
    recovery.name = 'recovery'
    recovery = recovery.shift(-1)
    recovery = recovery.reindex(dates, fill_value=0).shift()
    df = (quotes.
          join(factors[['factor']], how='left').
          join(recovery).join(yearfrac))
    if attach:
        coupon = df.tranche_spread.iat[0]/10000
    else:
        coupon = factors.coupon.iat[0]/10000
    df.indexfactor = df.indexfactor.bfill()
    df.loc[df.indexfactor.isnull(), 'indexfactor'] = factors.factor.iat[-1]
    df['clean_nav'] = df.upfront*df.factor
    df['accrued'] = df.yearfrac*coupon*df.factor
    df['unrealized_accrued'] = df.accrued.diff()
    df['realized_accrued'] = -df.unrealized_accrued.where(df.unrealized_accrued.isnull() |
                                                          (df.unrealized_accrued<0), 0)
    df['unrealized_accrued'] = df.unrealized_accrued.where(df.unrealized_accrued.isnull()|
                                                           (df.unrealized_accrued>0), df.accrued)
    df.loc[df.realized_accrued>0, 'realized_accrued'] += df.loc[df.realized_accrued>0, 'unrealized_accrued']
    df['unrealized_pnl'] = df.upfront.diff() * df.factor.shift()/100
    df['realized_pnl'] = df.upfront/100*df.indexfactor.diff()+df.recovery
    return df


def cds_explain2(dealid):
    pass

if __name__=="__main__":
    workdate = pd.datetime.today()
    engine = dbengine("dawndb")
    clo_list = get_list(engine, workdate, 'CLO')
    df = pnl_explain_list(clo_list.identifier.tolist(), '2015-10-30', '2015-11-30', engine)
    df = pd.concat(df)
    df_agg = df.groupby(level=1).sum()
    cds_df = cds_explain('HY', 21, '5yr', 25, 35, '2014-07-18')