aboutsummaryrefslogtreecommitdiffstats
path: root/python/pnl_explain.py
blob: b2122669f2a087be07e850734aa023a9c9a704c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import pandas as pd
from functools import reduce
from position import get_list
from db import dbengine
from dates import bus_day, imm_dates
import numpy as np

from psycopg2.extensions import register_adapter, AsIs
register_adapter(np.int64, lambda x: AsIs(x))

def pnl_explain(identifier, start_date = None, end_date = None,
                engine = dbengine("dawndb")):
    """ if start_date is None, pnl since inception"""
    trades = pd.read_sql_query("SELECT * FROM bonds where identifier=%s", engine,
                               params=(identifier,), parse_dates=['trade_date', 'settle_date'],
                               index_col=['settle_date'])
    marks = pd.read_sql_query("SELECT * FROM marks where identifier=%s", engine,
                              params=(identifier,), parse_dates = ['date'], index_col='date')
    factors = pd.read_sql_query("SELECT * FROM factors_history where identifier=%s", engine,
                                params=(identifier,), parse_dates = ['last_pay_date', 'prev_cpn_date'],
                                index_col=['last_pay_date'])

    for key in ['faceamount', 'principal_payment', 'accrued_payment']:
        trades.loc[~trades.buysell, key]  = -trades[key][~trades.buysell]

    df = (marks[['price']].
          join([factors, trades[['principal_payment', 'accrued_payment', 'faceamount']]],
               how='outer'))
    df.sort_index(inplace=True)
    if start_date is None:
        start_date = trades.trade_date.ix[trades.index.min()]
    if end_date is None:
        end_date = pd.datetime.today()
    dates = pd.date_range(start_date, end_date, freq = bus_day)
    keys1 = ['price','factor', 'coupon', 'prev_cpn_date']
    df[keys1] = df[keys1].fillna(method='ffill')
    keys2 = ['losses', 'principal','interest', 'faceamount','accrued_payment', 'principal_payment']
    df[keys2] = df[keys2].fillna(value=0)
    df.faceamount = df.faceamount.cumsum()
    keys = keys1 + ['faceamount']
    df1 = df.reindex(dates, keys, method='ffill')
    keys = ['losses', 'principal','interest', 'accrued_payment', 'principal_payment']
    df2 = df.reindex(dates, keys, fill_value=0)
    daily = pd.concat([df1, df2], axis = 1)

    daily['unrealized_pnl'] = daily.price.diff() * daily.factor.shift()/100 * daily.faceamount
    daily['realized_pnl'] = (daily.price/100 * daily.factor.diff() + daily.principal/100) * \
                            daily.faceamount
    daily['clean_nav'] = daily.price/100 * daily.factor * daily.faceamount
    daily['realized_accrued'] = daily.interest/100 * daily.faceamount
    days_accrued = daily.index - daily.prev_cpn_date
    daily['accrued'] = days_accrued.dt.days/360*daily.coupon/100*daily.factor * \
                       daily.faceamount
    extra_pnl = daily.clean_nav.diff() - daily.principal_payment
    daily.loc[daily.principal_payment>0 , 'unrealized_pnl'] += extra_pnl[daily.principal_payment>0]
    daily.loc[daily.principal_payment<0, 'realized_pnl'] += extra_pnl[daily.principal_payment<0]
    daily['realized_accrued'] -= daily.accrued_payment
    daily['unrealized_accrued'] = daily.accrued.diff() + daily.realized_accrued
    return daily[['clean_nav', 'accrued', 'unrealized_pnl', 'realized_pnl', 'unrealized_accrued',
                  'realized_accrued']].iloc[1:,]

def pnl_explain_list(id_list, start_date = None, end_date = None, engine = dbengine("dawndb")):
    return {identifier: pnl_explain(identifier, start_date, end_date, engine)
            for identifier in id_list}

def compute_tranche_factors(df, attach, detach):
    attach, detach = attach/100, detach/100
    df['indexrecovery'] = 1-df.indexfactor-df.cumulativeloss
    df = df.assign(tranche_loss = lambda x: (x.cumulativeloss-attach)/(detach-attach),
                   tranche_recov = lambda x: (x.indexrecovery-(1-detach))/(detach-attach))
    df[['tranche_loss', 'tranche_recov']] = df[['tranche_loss', 'tranche_recov']].clip(lower=0, upper=1)
    df['tranche_factor'] = 1-df.tranche_loss - df.tranche_recov
    return df

def cds_explain(index, series, tenor, attach = np.nan, detach = np.nan,
                start_date = None, end_date = None, engine = dbengine('serenitasdb')):
    cds_trade = np.isnan(attach) or np.isnan(detach)
    if cds_trade:
        quotes = pd.read_sql_query("SELECT date, (100-closeprice)/100 AS upfront " \
                                   "FROM index_quotes WHERE index=%s AND series=%s " \
                                   "AND tenor=%s ORDER BY date",
                                   engine, parse_dates=['date'],
                                   index_col='date', params = (index, series, tenor))
    else:
        #we take the latest version available
        sqlstring = "SELECT DISTINCT ON (quotedate) quotedate, upfront_mid AS upfront, " \
                    "tranche_spread FROM markit_tranche_quotes " \
                    "JOIN index_version USING (basketid) WHERE index=%s AND series=%s" \
                    "AND tenor=%s AND attach=%s AND detach=%s ORDER by quotedate, version desc"
        quotes = pd.read_sql_query(sqlstring, engine, parse_dates=['quotedate'],
                                   index_col='quotedate',
                                   params = (index, series, tenor, int(attach), int(detach)))
    sqlstring = "SELECT indexfactor/100 AS indexfactor, coupon, " \
                    "cumulativeloss/100 AS cumulativeloss, lastdate " \
                    "FROM index_desc WHERE index=%s AND series=%s AND tenor=%s " \
                    "ORDER BY lastdate"
    factors = pd.read_sql_query(sqlstring, engine, parse_dates=['lastdate'],
                                params = (index, series, tenor))

    if start_date is None:
        start_date = quotes.index.min()
    if end_date is None:
        end_date = pd.datetime.today()

    if not cds_trade:
        coupon = quotes.tranche_spread.iat[0]/10000
        factors = compute_tranche_factors(factors, attach, detach)
        factors['factor'] = factors.tranche_factor
        factors['recovery'] = factors.tranche_recov
    else:
        coupon = factors.coupon.iat[0]/10000
        factors['factor'] = factors.indexfactor
        factors['recovery'] = 1-factors.indexfactor-factors.cumulativeloss

    dates = pd.date_range(start_date, end_date, freq = bus_day)
    yearfrac = imm_dates(start_date, end_date)
    yearfrac = yearfrac.to_series().reindex(dates, method='ffill')
    yearfrac = yearfrac.index-yearfrac
    yearfrac = (yearfrac.dt.days+1)/360
    yearfrac.name = 'yearfrac'
    quotes = quotes.reindex(dates, method='ffill')

    if factors.shape[0]==1 or dates[-1] > max(factors.lastdate):
        factors.lastdate.iat[-1] = dates[-1]
    else:
        factors = factors.iloc[:-1]
    try:
        factors = (factors.set_index('lastdate', verify_integrity=True).
                   reindex(dates, ['factor', 'recovery'], method='bfill'))
    except ValueError:
        pdb.set_trace()
    factors.recovery = factors.recovery.diff()
    df = quotes.join([factors[['factor', 'recovery']], yearfrac])
    #df.loc[df.factor.isnull(), 'factor'] = factors.factor.iat[-1]
    df['clean_nav'] = df.upfront * df.factor
    df['accrued'] = - df.yearfrac * coupon*df.factor
    df['unrealized_accrued'] = df.accrued.diff()
    df['realized_accrued'] = -df.unrealized_accrued.where(df.unrealized_accrued.isnull() |
                                                          (df.unrealized_accrued>0), 0)
    df['unrealized_accrued'] = df.unrealized_accrued.where(df.unrealized_accrued.isnull()|
                                                           (df.unrealized_accrued<0), df.accrued)
    df.loc[df.realized_accrued>0, 'realized_accrued'] += df.loc[df.realized_accrued>0, 'unrealized_accrued']
    df['unrealized_pnl'] = df.upfront.diff() * df.factor.shift()
    df['realized_pnl'] = df.upfront/100*df.factor.diff()+df.recovery
    return df[['clean_nav', 'accrued', 'unrealized_accrued', 'realized_accrued',
               'unrealized_pnl', 'realized_pnl']]

def cds_explain_strat(strat, start_date, end_date, engine = dbengine("dawndb")):
    if not pd.core.common.is_list_like(strat):
        strat = [strat]
    cds_positions = pd.read_sql_table("orig_cds", engine,
                                      parse_dates = ['trade_date', 'upfront_settle_date'],
                                      index_col='dealid')
    cds_positions = cds_positions.ix[cds_positions.folder.isin(strat) &
                                     (end_date is None or \
                                      cds_positions.upfront_settle_date<=pd.Timestamp(end_date))]
    cds_positions.loc[cds_positions.protection=='Seller', "notional"] *= -1
    df = {}
    for r in cds_positions.itertuples():
        key = (r.index, r.series, r.tenor)
        if start_date is not None:
            start_date = max(r.trade_date, pd.Timestamp(start_date))
        else:
            start_date = r.trade_date
        trade_df = cds_explain(r.index, r.series, r.tenor, r.attach, r.detach,
                               start_date, end_date, engine)
        trade_df = r.notional * trade_df
        if start_date is None or (start_date <= r.trade_date):
            trade_df.realized_accrued.iat[3] -= trade_df.accrued.iat[0]
            extra_pnl = trade_df.clean_nav.iat[0] + trade_df.accrued.iat[0] + r.upfront
            trade_df.unrealized_pnl.iat[0] = extra_pnl
            trade_df.loc[:3, 'unrealized_accrued'] = 0
        df[key] = trade_df.add(df.get(key, 0), fill_value=0)
    return pd.concat(df)

if __name__=="__main__":
    workdate = pd.datetime.today()
    engine = dbengine("dawndb")
    clo_list = get_list(engine, workdate, 'CLO')
    df = pnl_explain_list(clo_list.identifier.tolist(), None, '2015-11-30', engine)
    df = pd.concat(df)
    df_agg = df.groupby(level=1).sum()
    cds_df = cds_explain_strat(['SER_IGINX', 'SER_IGMEZ'], None, '2015-12-08', engine)
    #cds_df = cds_explain_strat(['SER_HYMEZ'], None, '2015-03-10', engine)
    #cds_df2 = cds_explain_strat('SER_IGCURVE', None, None, engine)
    #cds_df = cds_explain('HY', 21, '5yr', 25, 35, '2014-07-18')