aboutsummaryrefslogtreecommitdiffstats
path: root/python/recon_bowdst.py
blob: ad3a6e2987b934bc03c9b694406fdc81077351f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import pandas as pd
from serenitas.utils.db import dbconn
import argparse
from serenitas.utils.exchange import ExchangeMessage
from exchangelib import FileAttachment
from io import StringIO


def difference(df):
    if ("db_mv" in df.columns) and ("db_notional" in df.columns):
        df["mv_difference"] = df["db_mv"] - df["admin_mv"]
        df["notional_difference"] = df["db_notional"] - df["admin_notional"]
    elif "db_mv" in df.columns:
        df["mv_difference"] = df["db_mv"] - df["admin_mv"]
    elif "db_notional" in df.columns:
        df["notional_difference"] = df["db_notional"] - df["admin_notional"]
    return df


def sums(df):
    if ("db_mv" in df.columns) and ("db_notional" in df.columns):
        return df[["db_mv", "admin_mv", "db_notional", "admin_notional"]].sum()
    elif "db_mv" in df.columns:
        return df[["db_mv", "admin_mv"]].sum()
    elif "db_notional" in df.columns:
        return df[["db_notional", "admin_notional"]].sum()


def recon(hierarchy_file, date):
    df = pd.read_excel(hierarchy_file)
    # security_balance = df[df["Asset Type"] == "FIXED INCOME SECURITIES"][
    #     "Base Market Value"
    # ].sum()
    bowd_bond_trades = df[df["CUSIP"].notnull()]
    bond_asset_classes = ["Subprime", "CRT", "CLO"]

    for asset in bond_asset_classes:
        db_bond_trades = pd.read_sql_query(
            f"select * from risk_positions(%s, %s, 'BOWDST')",
            dawndb,
            params=(date, asset),
        )

        bond_trades = bowd_bond_trades.merge(
            db_bond_trades,
            left_on="Mellon Security ID",
            right_on="identifier",
            how="right",
        )[
            [
                "description",
                "identifier",
                "notional",
                "factor",
                "Shares/Par",
                "Base Market Value",
                "usd_market_value",
            ]
        ]
        bond_trades["db_notional"] = bond_trades["Shares/Par"] * bond_trades["factor"]
        bond_trades.rename(
            columns={
                "usd_market_value": "db_mv",
                "Shares/Par": "admin_notional",
                "Base Market Value": "admin_mv",
            },
            inplace=True,
        )

    tranche_trades = pd.read_sql_query(
        f"select security_desc, maturity, orig_attach, orig_detach, sum(notional * tranche_factor) as db_notional, sum(admin_notional) as admin_notional, sum(serenitas_clean_nav) as db_mv, sum(admin_clean_nav) as admin_mv from tranche_risk_bowdst where date=%s group by security_desc, maturity, orig_attach, orig_detach ;",
        dawndb,
        params=(date,),
    )

    cdx_trades = pd.read_sql_query(
        f"select security_id, security_desc, index, series, version, maturity, globeop_notional as admin_notional, notional * factor as db_notional, clean_nav as db_mv, globeop_nav as admin_mv from list_cds_marks(%s, null, 'BOWDST')",
        dawndb,
        params=(date,),
    )

    cdx_swaption_trades = pd.read_sql_query(
        f"select security_id, option_type, strike, expiration_date, sum(serenitas_nav) as db_mv, sum(globeop_nav) as admin_mv from list_swaption_positions_and_risks(%s, 'BOWDST') group by security_id, option_type, strike, expiration_date;",
        dawndb,
        params=(date,),
    )

    kinds = [bond_trades, tranche_trades, cdx_trades, cdx_swaption_trades]
    names = ["bond_trades", "tranche_trades", "cdx_trades", "cdx_swaption_trades"]
    message = ""
    em = ExchangeMessage()
    attachments = []
    for kind, name in zip(kinds, names):
        # difference(kind).to_csv(f"/home/serenitas/flint/{name}_{date}.csv")
        buf = StringIO()
        difference(kind).to_csv(buf)
        attachments.append(
            FileAttachment(name=f"{name}_{date}.csv", content=buf.getvalue().encode())
        )
        pd.set_option("display.float_format", lambda x: "%.2f" % x)
        message += f"\n{name}: {pd.DataFrame(sums(kind), columns=['sums'])}"

        # print(f"{name}: {sums(kind)}"
    em.send_email(
        subject="Notional Totals",
        body=message,
        to_recipients=("fyu@lmcg.com",),
        attach=attachments,
    )


parser = argparse.ArgumentParser()
parser.add_argument("end_date")
args = parser.parse_args()

if __name__ == "__main__":
    dawndb = dbconn("dawndb")
    hierarchy_file = "/home/serenitas/flint/rec.xlsx"
    date = args.end_date
    recon(hierarchy_file, date)