aboutsummaryrefslogtreecommitdiffstats
path: root/python/reto.py
blob: 2839a4fd36be29cc878819d26a82421d547bc78c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pandas as pd
import numpy as np
from risk.portfolio import build_portfolio, generate_vol_surface


from serenitas.analytics.scenarios import run_portfolio_scenarios
from serenitas.analytics.base import Trade
from serenitas.analytics.index_data import load_all_curves


def gen_shocks(portf, shock_date, fund):
    Trade.init_ontr(shock_date)
    ontr_spread = Trade._ontr["HY"].spread
    spread_shock = np.array([-25.0, 1.0, +25.0, 100.0, 200.0, 500, 1000])
    spread_shock /= ontr_spread
    # Add in 2020 HY Wides, 2021 HY Tights, 2022 HY Wides scenarios
    historic_spreads = np.array([872, 269, 626])
    spread_shock = np.append(spread_shock, historic_spreads / ontr_spread - 1.0)
    vol_surface = generate_vol_surface(portf, lookback=10, source="BAML")
    scens = run_portfolio_scenarios(
        portf,
        date_range=[pd.Timestamp(shock_date)],
        params=["pnl", "hy_equiv"],
        spread_shock=spread_shock,
        vol_shock=[0.0],
        corr_shock=[0.0],
        vol_surface=vol_surface,
    )
    strategies = {
        s: "options"
        for s in ["HYOPTDEL", "HYPAYER", "HYREC", "IGOPTDEL", "IGPAYER", "IGREC"]
    } | {
        s: "tranches"
        for s in [
            "HYSNR",
            "HYMEZ",
            "HYINX",
            "HYEQY",
            "IGSNR",
            "IGMEZ",
            "IGINX",
            "IGEQY",
            "EUSNR",
            "EUMEZ",
            "EUINX",
            "EUEQY",
            "XOSNR",
            "XOMEZ",
            "XOINX",
            "XOEQY",
            "BSPK",
        ]
    }
    if fund == "BRINKER":
        scens = scens.xs(0, level="corr_shock")
    else:
        scens = scens.xs((0.0, 0.0), level=["vol_shock", "corr_shock"])

    scens.columns.names = ["strategy", "trade_id", "scen_type"]
    results = scens.stack(level="scen_type").reorder_levels([2, 0, 1]).sort_index()
    results = results.groupby(["strategy"], axis=1).sum()
    results = results.groupby(lambda s: strategies.get(s, s), axis=1).sum()
    # map shocks back to absolute spread diff
    results.index = results.index.set_levels(
        results.index.levels[2] * ontr_spread, level="spread_shock"
    )
    results["total"] = results.sum(axis=1)
    results = results.stack().reset_index()
    results.scen_type = results.scen_type.str.upper()
    results.insert(0, "date", results.pop("date"))
    return results


def save_shocks(conn, date, df, fund):
    with conn.cursor() as c:
        c.execute(
            "DELETE FROM shocks WHERE fund=%s AND date=%s",
            (
                fund,
                args.date,
            ),
        )
        conn.commit()
        c.executemany(
            "INSERT INTO shocks VALUES (%s, %s, %s, %s, %s, %s)",
            [(*t, fund) for t in df.itertuples(index=False)],
        )
        conn.commit()


def get_survival_curves(conn, date):
    surv_curves = load_all_curves(conn, date)
    surv_curves["spread"] = surv_curves["curve"].apply(
        lambda sc: [h for d, h in sc][5] * (1 - sc.recovery_rates[5])
    )
    return surv_curves.groupby(level=0).first()[["name", "company_id", "spread"]]


def gen_jtd(portf, survival_curves):
    jtd = portf.jtd_single_names()
    jtd = survival_curves.join(jtd.iloc[:, 0], how="right")
    jtd.columns = ["name", "company_id", "5yr_spread", "jtd"]
    return jtd.groupby(["company_id", "name"], as_index=False).sum()


def save_jtd(conn, date, df, fund):
    with conn.cursor() as c:
        c.execute(
            "DELETE FROM jtd_risks WHERE fund=%s AND date=%s",
            (
                fund,
                date,
            ),
        )
        conn.commit()
        c.executemany(
            "INSERT INTO jtd_risks(date, fund, company_id, name, five_year_spread, jtd) "
            "VALUES (%s, %s, %s, %s, %s, %s)",
            [(date, fund, *t) for t in df.itertuples(index=False)],
        )
        conn.commit()


if __name__ == "__main__":
    import datetime
    import argparse
    import warnings
    from serenitas.analytics.dates import prev_business_day
    from serenitas.utils.db2 import dbconn
    from serenitas.analytics.config import C

    parser = argparse.ArgumentParser(
        description="Shock data/ calculate JTD and insert into DB"
    )
    parser.add_argument(
        "date",
        nargs="?",
        type=datetime.date.fromisoformat,
        default=prev_business_day(datetime.date.today()),
    )
    parser.add_argument("-n", "--no-upload", action="store_true", help="do not upload")
    args = parser.parse_args()

    C.local = False
    C.dual_corr_tranche_cache_size = 16384

    survival_curves = get_survival_curves(Trade._conn, args.date)
    conn = dbconn("dawndb")
    for fund in (
        "SERCGMAST",
        "BOWDST",
        "ISOSEL",
        "BRINKER",
    ):
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", message="pandas only supports SQLAlchemy connectable"
            )
            warnings.filterwarnings("ignore", message="skipped 1 empty curves")
            portf, _ = build_portfolio(args.date, args.date, fund)
            shocks = gen_shocks(portf, args.date, fund)
            save_shocks(conn, args.date, shocks, fund)
            print(f"{args.date}: {fund} Shocks Done")
            jtd = gen_jtd(portf, survival_curves)
            save_jtd(conn, args.date, jtd, fund)
            print(f"{args.date}: {fund} JTD Done")