1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
import datetime
import globeop_reports as go
import pandas as pd
import numpy as np
import argparse
from pandas.tseries.offsets import BDay, MonthEnd, BMonthEnd, CustomBusinessMonthEnd
from risk.bonds import subprime_risk, crt_risk, clo_risk
from risk.portfolio import build_portfolio, generate_vol_surface
from pnl_explain import get_bond_pv
import serenitas.analytics as ana
from serenitas.analytics.index_data import load_all_curves
from serenitas.analytics.scenarios import run_portfolio_scenarios
from serenitas.analytics.basket_index import BasketIndex
from serenitas.analytics.base import Trade
from serenitas.utils.db2 import dbconn
from serenitas.utils.pool import serenitas_pool, dawn_pool
from serenitas.utils.db import serenitas_engine, dawn_engine
from serenitas.analytics.dates import prev_business_day
def parse_args():
"""Parses command line arguments"""
parser = argparse.ArgumentParser(description="Shock data and insert into DB")
parser.add_argument(
"date",
nargs="?",
type=datetime.date.fromisoformat,
default=prev_business_day(datetime.date.today()),
)
parser.add_argument("-n", "--no-upload", action="store_true", help="do not upload")
return parser.parse_args()
def gen_spreads(shock_date, fund):
Trade.init_ontr(shock_date)
ana._local = False
spread_shock = np.array([-100.0, -25.0, 1.0, +25.0, 100.0, 200.0, 500, 1000])
spread_shock /= Trade._ontr["HY"].spread
portf, _ = build_portfolio(shock_date, shock_date, fund)
vol_surface = generate_vol_surface(portf, 10, "BAML")
portf.reset_pv()
scens = run_portfolio_scenarios(
portf,
date_range=[pd.Timestamp(shock_date)],
params=["pnl", "hy_equiv"],
spread_shock=spread_shock,
vol_shock=[0.0],
corr_shock=[0.0],
vol_surface=vol_surface,
)
strategies = {}
strategies["options"] = [
"HYOPTDEL",
"HYPAYER",
"HYREC",
"IGOPTDEL",
"IGPAYER",
"IGREC",
]
strategies["tranches"] = [
"HYSNR",
"HYMEZ",
"HYINX",
"HYEQY",
"IGSNR",
"IGMEZ",
"IGINX",
"IGEQY",
"EUSNR",
"EUMEZ",
"EUINX",
"EUEQY",
"XOSNR",
"XOMEZ",
"XOINX",
"XOEQY",
"BSPK",
]
if fund == "BRINKER":
scens = scens.xs(0, level="corr_shock")
else:
scens = scens.xs((0.0, 0.0), level=["vol_shock", "corr_shock"])
scens.columns.names = ["strategy", "trade_id", "scen_type"]
results = {}
for i, g in scens.groupby(level="scen_type", axis=1):
temp = g.groupby(level="strategy", axis=1).sum()
for key, item in strategies.items():
exist_columns = set(temp.columns).intersection(item)
temp[key] = temp[exist_columns].sum(axis=1)
temp.drop(exist_columns, axis=1, inplace=True)
temp["total"] = temp.sum(axis=1)
results[i] = temp
results = pd.concat(results)
return results
def transform_df(df):
df = df.rename(
columns={
"spread_shock": "spread_shock",
"CASH_BASIS": "CASH_BASIS",
"HEDGE_CLO": "HEDGE_CLO",
"TEST": "TEST",
}
)
df = df.reset_index().rename(columns={"level_0": "unit"})
# Get the list of strategy columns by slicing the `df.columns` array
strategy_columns = df.columns[3:]
# Create a new dataframe with the desired format, using the dynamic list of strategy columns
df = pd.melt(
df, id_vars=["unit", "date", "spread_shock"], value_vars=strategy_columns
)
# Rename the columns to the desired names
df = df.rename(
columns={"variable": "strategy", "value": "value", "unit": "output_type"}
)
# Print the new dataframe to check
return df
if __name__ == "__main__":
args = parse_args()
conn = dbconn("dawndb")
for fund in ("SERCGMAST", "BOWDST", "ISOSEL", "BRINKER"):
results = gen_spreads(args.date, fund)
with conn.cursor() as c:
c.execute(
"DELETE FROM shocks WHERE fund=%s and date=%s",
(
fund,
args.date,
),
)
conn.commit()
df = transform_df(results)
df["fund"] = fund
df.to_sql("shocks", dawn_engine, if_exists="append", index=False)
|