aboutsummaryrefslogtreecommitdiffstats
path: root/python/reto.py
blob: 36a9a3454c090d18bb29d81e2ad14309d6dada6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import datetime
import pandas as pd
import numpy as np
import argparse

from risk.portfolio import build_portfolio, generate_vol_surface

import serenitas.analytics as ana
from serenitas.analytics.scenarios import run_portfolio_scenarios
from serenitas.analytics.base import Trade
from serenitas.utils.db2 import dbconn
from serenitas.utils.db import dawn_engine
from serenitas.analytics.dates import prev_business_day


def parse_args():
    """Parses command line arguments"""
    parser = argparse.ArgumentParser(description="Shock data and insert into DB")
    parser.add_argument(
        "date",
        nargs="?",
        type=datetime.date.fromisoformat,
        default=prev_business_day(datetime.date.today()),
    )
    parser.add_argument("-n", "--no-upload", action="store_true", help="do not upload")
    return parser.parse_args()


def vol_surface(portf, try_days_back):
    for source in ("BAML", "GS", "MS", "JPM"):
        try:
            vol_surface = generate_vol_surface(portf, 10, source)
        except IndexError:
            pass
        else:
            return vol_surface


def gen_spreads(shock_date, fund):
    Trade.init_ontr(shock_date)
    ana._local = False
    spread_shock = np.array([-100.0, -25.0, 1.0, +25.0, 100.0, 200.0, 500, 1000])
    spread_shock /= Trade._ontr["HY"].spread
    portf, _ = build_portfolio(shock_date, shock_date, fund)
    vol_surface = generate_vol_surface(portf, 10)
    portf.reset_pv()
    scens = run_portfolio_scenarios(
        portf,
        date_range=[pd.Timestamp(shock_date)],
        params=["pnl", "hy_equiv"],
        spread_shock=spread_shock,
        vol_shock=[0.0],
        corr_shock=[0.0],
        vol_surface=vol_surface,
    )

    strategies = {}
    strategies["options"] = [
        "HYOPTDEL",
        "HYPAYER",
        "HYREC",
        "IGOPTDEL",
        "IGPAYER",
        "IGREC",
    ]
    strategies["tranches"] = [
        "HYSNR",
        "HYMEZ",
        "HYINX",
        "HYEQY",
        "IGSNR",
        "IGMEZ",
        "IGINX",
        "IGEQY",
        "EUSNR",
        "EUMEZ",
        "EUINX",
        "EUEQY",
        "XOSNR",
        "XOMEZ",
        "XOINX",
        "XOEQY",
        "BSPK",
    ]
    if fund == "BRINKER":
        scens = scens.xs(0, level="corr_shock")
    else:
        scens = scens.xs((0.0, 0.0), level=["vol_shock", "corr_shock"])

    scens.columns.names = ["strategy", "trade_id", "scen_type"]

    results = {}
    for i, g in scens.groupby(level="scen_type", axis=1):
        temp = g.groupby(level="strategy", axis=1).sum()
        for key, item in strategies.items():
            exist_columns = list(set(temp.columns).intersection(item))
            temp[key] = temp[exist_columns].sum(axis=1)
            temp.drop(exist_columns, axis=1, inplace=True)
        temp["total"] = temp.sum(axis=1)
        results[i] = temp
    results = pd.concat(results)
    return results


def process_dataframe(raw_df):
    """Clean and transform the input dataframe to insert into database."""
    transformed_df = raw_df.reset_index()
    transformed_df = transformed_df.rename(columns={"level_0": "unit"})
    strategy_columns = transformed_df.columns[3:]
    transformed_df = pd.melt(
        transformed_df,
        id_vars=["unit", "date", "spread_shock"],
        value_vars=strategy_columns,
    )
    transformed_df = transformed_df.rename(
        columns={"variable": "strategy", "value": "value", "unit": "risk_type"}
    )
    transformed_df.risk_type = transformed_df.risk_type.str.upper()
    return transformed_df


if __name__ == "__main__":
    args = parse_args()
    conn = dbconn("dawndb")
    for fund in ("SERCGMAST", "BOWDST", "ISOSEL", "BRINKER"):
        results = gen_spreads(args.date, fund)
        with conn.cursor() as c:
            c.execute(
                "DELETE FROM shocks WHERE fund=%s and date=%s",
                (
                    fund,
                    args.date,
                ),
            )
        df = process_dataframe(results)
        df["fund"] = fund
        df.to_sql("shocks", dawn_engine, if_exists="append", index=False)
        conn.commit()