aboutsummaryrefslogtreecommitdiffstats
path: root/python/risk/bonds.py
blob: 95dc63fe2a487f60b06564b89d9d93b17f963ba9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import pandas as pd
import numpy as np
from serenitas import analytics
import datetime

from enum import Enum, auto
from serenitas.analytics.yieldcurve import YC
from serenitas.analytics.index import CreditIndex
from serenitas.analytics import on_the_run


class AssetClass(Enum):
    Subprime = auto()
    CLO = auto()
    CSO = auto()
    CRT = auto()


def get_df(date, engine, *, zero_factor=False):
    if zero_factor:
        normalization = "unnormalized"
        table1 = "priced_orig_ntl"
        table2 = "priced_percentiles_orig_ntl"
    else:
        normalization = "current_notional"
        table1 = "priced"
        table2 = "priced_percentiles"
    if date > datetime.date(2017, 10, 1):
        sql_string_prices = (
            "SELECT cusip, model_version, pv, modDur, delta_yield, "
            "wal, pv_io, pv_po, pv_RnW, delta_ir_io, delta_ir_po, "
            "delta_hpi, delta_RnW, delta_mult, delta_ir, pv_FB "
            f"FROM {table1} "
            "JOIN model_versions USING (model_id_sub) "
            "JOIN model_versions_nonagency USING (model_id_sub) "
            "JOIN simulations_nonagency USING (simulation_id) "
            "WHERE timestamp BETWEEN %s  AND date_add(%s, INTERVAL 1 DAY) "
            "AND description='normal' "
            "AND normalization=%s"
        )
        sql_string_percentile = (
            "SELECT cusip, PV, percentile "
            f"FROM {table2} "
            "JOIN model_versions USING (model_id_sub) "
            "JOIN model_versions_nonagency USING (model_id_sub) "
            "JOIN simulations_nonagency USING (simulation_id) "
            "WHERE timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
            "AND model_version=3 "
            "AND percentile IN (5, 25, 50, 75, 95) "
            "AND normalization=%s "
            "AND description='normal'"
        )
    else:
        sql_string_prices = (
            "SELECT cusip, model_version, pv, modDur, delta_yield, "
            "wal, pv_io, pv_po, pv_RnW, delta_ir_io, delta_ir_po, "
            "delta_hpi, delta_RnW, delta_mult, delta_ir, pv_FB "
            f"FROM {table1} "
            "WHERE timestamp BETWEEN %s  AND date_add(%s, INTERVAL 1 DAY) "
            "AND normalization=%s"
        )
        sql_string_percentile = (
            "SELECT cusip, PV, percentile "
            f"FROM {table2} "
            "WHERE timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
            "AND model_version=3 "
            "AND percentile IN (5, 25, 50, 75, 95) "
            "AND normalization=%s"
        )
    df_prices = pd.read_sql_query(
        sql_string_prices,
        engine,
        ["cusip", "model_version"],
        params=(date, date, normalization),
    )
    df_percentiles = pd.read_sql_query(
        sql_string_percentile,
        engine,
        ["cusip", "percentile"],
        params=(date, date, normalization),
    )
    df_prices = df_prices.unstack("model_version")
    df_percentiles = df_percentiles.unstack("percentile")
    return df_prices.join(df_percentiles, how="left")


def subprime_risk(pos_date, conn, engine, model_date=None, fund="SERCGMAST"):
    analytics.init_ontr(pos_date)
    if model_date is None:
        sql_string = (
            "SELECT distinct timestamp::date FROM priced "
            "WHERE normalization = 'current_notional' and model_version = 1 "
            "AND date(timestamp) BETWEEN %s AND %s ORDER BY timestamp DESC"
        )
        with conn.cursor() as c:
            c.execute(sql_string, (pos_date - datetime.timedelta(days=15), pos_date))
            (model_date,) = c.fetchone()
    df = get_df(model_date, engine, zero_factor=False)
    df_zero = get_df(model_date, engine, zero_factor=True)
    df.loc[df_zero.index] = df_zero
    df_pos = get_portfolio(pos_date, conn, AssetClass.Subprime, fund)
    df_pv = df.xs("pv", axis=1, level=0)
    df_pv.columns = ["pv1", "pv2", "pv3"]
    df_pv_perct = df.xs("PV", axis=1, level=0)
    df_pv_perct.columns = ["pv5", "pv25", "pv50", "pv75", "pv95"]
    df_modDur = df[("modDur", 1)].where(df[("modDur", 1)] < 30, 30)
    df_modDur.name = "modDur"
    df_v1 = df.xs(1, axis=1, level="model_version")[
        ["pv_RnW", "delta_mult", "delta_hpi", "delta_ir"]
    ]
    df_v1.columns = ["v1pv_RnW", "v1_lsdel", "v1_hpidel", "v1_irdel"]
    df_pv_FB = df[("pv_FB", 3)]
    df_pv_FB.name = "pv_FB"
    df_risk = pd.concat(
        [
            df_pv,
            df_modDur,
            df_pv_perct,
            df.xs(3, axis=1, level="model_version")[
                [
                    "delta_yield",
                    "wal",
                    "pv_io",
                    "pv_po",
                    "pv_RnW",
                    "delta_ir_io",
                    "delta_ir_po",
                    "delta_hpi",
                    "delta_RnW",
                    "delta_mult",
                ]
            ],
            df_v1,
            df_pv_FB,
        ],
        axis=1,
    )

    df_calc = df_pos.join(df_risk)
    yc = YC(evaluation_date=pos_date)

    df_calc = df_calc.assign(
        bond_yield=df_calc.modDur.apply(
            lambda x: x if np.isnan(x) else float(yc.zero_rate(x))
        ),
        delta_ir=df_calc.delta_ir_io + df_calc.delta_ir_po,
        # use original notional for 0 factor bonds to calc yield
        curr_ntl=df_calc.notional * df_calc.factor.where(df_calc.factor != 0.0, 1.0),
        # assume beta and ontr is initialized from analytics
        hy_equiv=(
            df_calc.delta_yield
            / analytics._ontr["HY"].risky_annuity
            * analytics._beta["SUBPRIME"]
            * 1e2
            * df_calc.local_market_value
            / df_calc.pv3
        ),
        date=pd.Timestamp(pos_date),
    )
    df_calc = df_calc[(df_calc.usd_market_value != 0)]
    df_calc.bond_yield += (
        np.log(df_calc.pv1 * df_calc.curr_ntl / df_calc.local_market_value)
        / df_calc.modDur
    ).clip(upper=1.0)
    # delta scaled by ratio of market_value to model value
    df_calc.delta_ir *= df_calc.local_market_value / df_calc.pv3
    return df_calc


def insert_subprime_risk(df, conn):
    cols = [
        "figi",
        "pv1",
        "pv2",
        "pv3",
        "modDur",
        "pv5",
        "pv25",
        "pv50",
        "pv75",
        "pv95",
        "delta_yield",
        "wal",
        "pv_io",
        "pv_po",
        "pv_RnW",
        "delta_ir_io",
        "delta_ir_po",
        "delta_hpi",
        "delta_RnW",
        "delta_mult",
        "v1pv_RnW",
        "v1_lsdel",
        "v1_hpidel",
        "v1_irdel",
        "pv_FB",
        "bond_yield",
        "hy_equiv",
        "delta_ir",
        "date",
    ]
    update_str = ",".join(f"{c} = EXCLUDED.{c}" for c in cols)
    col_names = ",".join(f"{c}" for c in cols)
    sql_str = (
        f"INSERT INTO subprime_risk ({col_names}) "
        f"VALUES ({','.join(['%s'] * len(cols))}) "
        "ON CONFLICT (date, figi) DO UPDATE "
        f"SET {update_str}"
    )

    df_temp = df.reset_index()[cols]
    with conn.cursor() as c:
        for _, row in df_temp.iterrows():
            c.execute(sql_str, (*row,))
    conn.commit()


def get_portfolio(date, conn, asset_class: AssetClass, fund="SERCGMAST"):
    df = pd.read_sql_query(
        "SELECT * FROM risk_positions(%s, %s, %s)",
        conn,
        params=(date, asset_class.name, fund),
    )
    with conn.cursor() as c:
        c.execute("SELECT identifier, figi FROM securities")
        figi_map = {identifier: figi for identifier, figi in c.fetchall()}
    df["figi"] = df["identifier"].replace(figi_map)
    return df.set_index("figi")


def crt_risk(date, dawn_conn, crt_engine, fund="SERCGMAST"):
    hy_ontr = CreditIndex("HY", on_the_run("HY", date), "5yr", date)
    hy_ontr.mark()
    yc = YC(evaluation_date=date)
    df = get_portfolio(date, dawn_conn, AssetClass.CRT, fund)
    scen = {
        datetime.date(2019, 5, 31): "base",
        datetime.date(2020, 1, 29): "hpi3_ir3",
        datetime.date(2020, 3, 18): "hpi4_ir3",
        datetime.date(2020, 10, 20): "hpi5_ir3",
        datetime.date(3000, 1, 1): "econ6_ir3",
    }
    scen_type = None
    for d, s in scen.items():
        if scen_type is None and date < d:
            scen_type = s
    sql_string = (
        "SELECT distinct timestamp FROM priced_at_market "
        "where model_des = %s "
        "AND timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) order by timestamp desc"
    )
    with crt_engine.connect() as c:
        r = c.execute(sql_string, (scen_type, date - datetime.timedelta(days=15), date))
        model_date = r.fetchone()
        if model_date:
            model_date = model_date[0]
    df_model = pd.read_sql_query(
        "SELECT * from priced_at_market WHERE timestamp = %s",
        crt_engine,
        "cusip",
        params=(model_date,),
    )
    if any(~df_model["delta.ir"].isna()):
        df_model = df_model[~df_model["delta.ir"].isna()]
    df = df.join(df_model)
    df.rename(columns={"duration_FW": "modDur"}, inplace=True)
    df = df[(df.notional != 0)]
    df = df.assign(
        bond_yield=df.modDur.apply(
            lambda x: x if np.isnan(x) else float(yc.zero_rate(x))
        ),
        curr_ntl=df.notional * df.factor,
        hy_equiv=(
            df.modDur
            / hy_ontr.risky_annuity
            * analytics._beta["CRT"]
            * df.notional
            * df.factor
        ),
    )
    df.bond_yield += df.DM / 10000
    delta = pd.read_sql_query(
        "SELECT distinct on (strategy) "
        "strategy, beta_crt from beta_crt WHERE "
        "date <= %s ORDER BY strategy, date desc",
        dawn_conn,
        index_col="strategy",
        params=(date,),
    )
    df.hy_equiv *= df["strategy"].replace(delta.beta_crt.to_dict())
    return df


def clo_risk(date, dawn_conn, et_conn, fund="SERCGMAST"):
    yc = YC(evaluation_date=date)
    df = get_portfolio(date, dawn_conn, AssetClass.CLO, fund)
    if df.empty:
        return None
    placeholders = ",".join(["%s"] * df.shape[0])
    sql_string = f"SELECT * FROM historical_tranche_risk(%s, {placeholders})"
    model = pd.read_sql_query(
        sql_string, et_conn, parse_dates=["pricingdate"], params=(date, *df.index)
    )
    model.index = df.index
    df = df.join(model, lsuffix="mark")
    df.rename(columns={"duration": "modDur"}, inplace=True)
    df = df.assign(
        bond_yield=df.modDur.apply(
            lambda x: x if np.isnan(x) else float(yc.zero_rate(x))
        ),
        curr_ntl=df.notional * df.factor,
        hy_equiv=(df.delta * df.notional * df.factor),
    )
    df.bond_yield += (
        np.log(df.curr_ntl / df.local_market_value) / df.modDur
        + df.curr_cpn / 100
        - float(yc.zero_rate(0.25))
    ).clip(upper=1.0)
    return df