1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
import pandas as pd
import numpy as np
from utils.db import dbengine
from yieldcurve import YC
from quantlib.termstructures.yield_term_structure import YieldTermStructure
def latest_sim(date, engine):
sql_string = (
"SELECT model_id_sub FROM model_versions "
"JOIN model_versions_nonagency USING (model_id_sub) "
"JOIN simulations_nonagency USING (simulation_id) "
"WHERE (date(start_time) <= %s) AND (description = 'normal') "
"ORDER BY start_time DESC"
)
conn = engine.raw_connection()
c = conn.cursor()
c.execute(sql_string, (date,))
model_id_sub, = next(c)
c.close()
return model_id_sub
def get_df(date, engine):
model_id_sub = latest_sim(date, engine)
df_prices = pd.read_sql_query(
"SELECT cusip, model_version, pv, modDur, delta_yield, "
"wal, pv_io, pv_po, pv_RnW, delta_ir_io, delta_ir_po, "
"delta_hpi, delta_RnW, delta_mult, delta_ir, pv_FB "
"FROM priced WHERE "
"timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
"AND model_id_sub=%s "
"AND normalization='current_notional'",
engine,
["cusip", "model_version"],
params=(date, date, model_id_sub),
)
df_percentiles = pd.read_sql_query(
"SELECT cusip, PV, percentile "
"FROM priced_percentiles WHERE "
"timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
"AND model_version=3 "
"AND model_id_sub=%s "
"AND percentile IN (5, 25, 50, 75, 95) "
"AND normalization='current_notional'",
engine,
["cusip", "percentile"],
params=(date, date, model_id_sub),
)
df_prices = df_prices.unstack("model_version")
df_percentiles = df_percentiles.unstack("percentile")
return df_prices.join(df_percentiles, how="left")
def subprime_risk(date, conn, engine):
df = get_df(date, engine)
df_pos = get_portfolio(date, conn, "Subprime")
df_pv = df.xs("pv", axis=1, level=0)
df_pv.columns = ["pv1", "pv2", "pv3"]
df_pv_perct = df.xs("PV", axis=1, level=0)
df_pv_perct.columns = ["pv5", "pv25", "pv50", "pv75", "pv95"]
df_modDur = df[("modDur", 1)]
df_modDur.name = "modDur"
df_v1 = df.xs(1, axis=1, level="model_version")[
["pv_RnW", "delta_mult", "delta_hpi", "delta_ir"]
]
df_v1.columns = ["v1pv_RnW", "v1_lsdel", "v1_hpidel", "v1_irdel"]
df_pv_FB = df[("pv_FB", 3)]
df_pv_FB.name = "pv_FB"
df_risk = pd.concat(
[
df_pv,
df_modDur,
df_pv_perct,
df.xs(3, axis=1, level="model_version")[
[
"delta_yield",
"wal",
"pv_io",
"pv_po",
"pv_RnW",
"delta_ir_io",
"delta_ir_po",
"delta_hpi",
"delta_RnW",
"delta_mult",
]
],
df_v1,
df_pv_FB,
],
axis=1,
)
df_calc = df_pos.join(df_risk)
df_calc = df_calc[~df_calc["strategy"].str.contains("CRT")].dropna()
yc = YC(evaluation_date=date)
df_calc = df_calc.assign(
b_yield=df_calc.modDur.apply(lambda x: float(yc.zero_rate(x))),
delta_ir=df_calc.delta_ir_io + df_calc.delta_ir_po,
curr_ntl=df_calc.notional * df_calc.factor,
)
df_calc.b_yield += np.minimum(
(df_calc.pv1 * df_calc.curr_ntl / df_calc.local_market_value)
** (1 / df_calc.modDur)
- 1,
1,
).dropna()
df_calc.delta_yield *= df_calc.local_market_value / df_calc.pv3
df_calc.delta_ir *= (
(df_calc.local_market_value / df_calc.curr_ntl) / df_calc.pv3 * df_calc.curr_ntl
)
return df_calc
def get_portfolio(date, conn, asset_class, fund="SERCGMAST"):
df = pd.read_sql_query(
"SELECT * FROM risk_positions(%s, %s, %s)",
conn,
params=(date, asset_class, fund),
)
df["cusip"] = df.identifier.str.slice(0, 9)
df = df.set_index("cusip")
return df
def crt_risk(date, conn, engine):
df = get_portfolio(date, conn, "Subprime")
df = df[df["strategy"].str.contains("CRT")].dropna()
df_model = pd.read_sql_query(
"SELECT * from priced_at_market where "
"timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
"and model_des = 'hpi3_ir3'",
engine,
"cusip",
params=(date, date),
)
df = df.join(df_model)
df["curr_ntl"] = df["notional"] * df["factor"]
df["delta_yield"] = df["curr_ntl"] * df["duration_FW"]
return df
def clo_risk(date, conn, conn_1):
df = get_portfolio(date, conn, "CLO")
sql_string = (
"select distinct cusip, identifier from bonds where asset_class = 'CLO'"
)
cur = conn.cursor()
cur.execute(sql_string)
cusip_map = {identifier: cusip for cusip, identifier in cur.fetchall()}
df["cusip"] = df["identifier"].replace(cusip_map)
placeholders = ",".join(["%s"] * (1 + len(df)))
sql_string = f"SELECT * FROM historical_cusip_risk({placeholders})"
model = pd.read_sql_query(
sql_string,
conn_1,
parse_dates=["pricingdate"],
params=[date, *df["cusip"].tolist()],
)
model.index = df["cusip"]
df = df.join(model, lsuffix="mark")
df["curr_ntl"] = df["notional"] * df["factor"]
df["hy_equiv"] = df["curr_ntl"] * df["delta"]
return df
|