aboutsummaryrefslogtreecommitdiffstats
path: root/python/risk/bonds.py
blob: fda3611113826045bc2568ad467ad133eba2bcdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import pandas as pd
import numpy as np

from enum import Enum, auto
from utils.db import dbengine
from yieldcurve import YC
from quantlib.termstructures.yield_term_structure import YieldTermStructure


class AssetClass(Enum):
    Subprime = auto()
    CLO = auto()
    CSO = auto()
    CRT = auto()


def latest_sim(date, engine):
    sql_string = (
        "SELECT model_id_sub FROM model_versions "
        "JOIN model_versions_nonagency USING (model_id_sub) "
        "JOIN simulations_nonagency USING (simulation_id) "
        "WHERE (date(start_time) <= %s) AND (description = 'normal') "
        "ORDER BY start_time DESC"
    )
    conn = engine.raw_connection()
    c = conn.cursor()
    c.execute(sql_string, (date,))
    model_id_sub, = next(c)
    c.close()
    return model_id_sub


def get_df(date, engine):
    model_id_sub = latest_sim(date, engine)
    df_prices = pd.read_sql_query(
        "SELECT cusip, model_version, pv, modDur, delta_yield, "
        "wal, pv_io, pv_po, pv_RnW, delta_ir_io, delta_ir_po, "
        "delta_hpi, delta_RnW, delta_mult, delta_ir, pv_FB "
        "FROM priced WHERE "
        "timestamp BETWEEN %s  AND date_add(%s, INTERVAL 1 DAY) "
        "AND model_id_sub=%s "
        "AND normalization='current_notional'",
        engine,
        ["cusip", "model_version"],
        params=(date, date, model_id_sub),
    )
    df_percentiles = pd.read_sql_query(
        "SELECT cusip, PV, percentile "
        "FROM priced_percentiles WHERE "
        "timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
        "AND model_version=3 "
        "AND model_id_sub=%s "
        "AND percentile IN (5, 25, 50, 75, 95) "
        "AND normalization='current_notional'",
        engine,
        ["cusip", "percentile"],
        params=(date, date, model_id_sub),
    )
    df_prices = df_prices.unstack("model_version")
    df_percentiles = df_percentiles.unstack("percentile")
    return df_prices.join(df_percentiles, how="left")


def subprime_risk(date, conn, engine):
    df = get_df(date, engine)
    df_pos = get_portfolio(date, conn, AssetClass.Subprime)
    df_pv = df.xs("pv", axis=1, level=0)
    df_pv.columns = ["pv1", "pv2", "pv3"]
    df_pv_perct = df.xs("PV", axis=1, level=0)
    df_pv_perct.columns = ["pv5", "pv25", "pv50", "pv75", "pv95"]
    df_modDur = df[("modDur", 1)]
    df_modDur.name = "modDur"
    df_v1 = df.xs(1, axis=1, level="model_version")[
        ["pv_RnW", "delta_mult", "delta_hpi", "delta_ir"]
    ]
    df_v1.columns = ["v1pv_RnW", "v1_lsdel", "v1_hpidel", "v1_irdel"]
    df_pv_FB = df[("pv_FB", 3)]
    df_pv_FB.name = "pv_FB"
    df_risk = pd.concat(
        [
            df_pv,
            df_modDur,
            df_pv_perct,
            df.xs(3, axis=1, level="model_version")[
                [
                    "delta_yield",
                    "wal",
                    "pv_io",
                    "pv_po",
                    "pv_RnW",
                    "delta_ir_io",
                    "delta_ir_po",
                    "delta_hpi",
                    "delta_RnW",
                    "delta_mult",
                ]
            ],
            df_v1,
            df_pv_FB,
        ],
        axis=1,
    )

    df_calc = df_pos.join(df_risk)
    yc = YC(evaluation_date=date)

    df_calc = df_calc.assign(
        b_yield=df_calc.modDur.apply(lambda x: float(yc.zero_rate(x))),
        delta_ir=df_calc.delta_ir_io + df_calc.delta_ir_po,
        curr_ntl=df_calc.notional * df_calc.factor,
    )

    df_calc.b_yield += (
        (df_calc.pv1 * df_calc.curr_ntl / df_calc.local_market_value).log()
        / df_calc.modDur
    ).clip_upper(1.0)
    # delta scaled by ratio of market_value to model value
    df_calc.delta_yield *= df_calc.local_market_value / df_calc.pv3
    df_calc.delta_ir *= df_calc.local_market_value / df_calc.pv3
    return df_calc


def get_portfolio(date, conn, asset_class: AssetClass, fund="SERCGMAST"):
    df = pd.read_sql_query(
        "SELECT * FROM risk_positions(%s, %s, %s)",
        conn,
        params=(date, asset_class.name, fund),
    )
    if asset_class is AssetClass.CLO:
        with conn.cursor() as c:
            c.execute(
                "SELECT cusip, identifier FROM securities " "WHERE asset_class = 'CLO'"
            )
            cusip_map = {identifier: cusip for cusip, identifier in c.fetchall()}
        df["cusip"] = df["identifier"].replace(cusip_map)
    else:  # only CLOs used ISIN for now
        df["cusip"] = df.identifier.str.slice(0, 9)
    return df.set_index("cusip")


def crt_risk(date, dawn_conn, engine):
    df = get_portfolio(date, dawn_conn, AssetClass.CRT)
    df_model = pd.read_sql_query(
        "SELECT * from priced_at_market WHERE "
        "timestamp BETWEEN %s AND date_add(%s, INTERVAL 1 DAY) "
        "AND model_des = 'hpi3_ir3'",
        engine,
        "cusip",
        params=(date, date),
    )
    df = df.join(df_model)
    df["curr_ntl"] = df["notional"] * df["factor"]
    df["delta_yield"] = df["curr_ntl"] * df["duration_FW"]
    return df


def clo_risk(date, dawn_conn, et_conn):
    df = get_portfolio(date, dawn_conn, AssetClass.CLO)
    placeholders = ",".join(["%s"] * df.shape[0])
    sql_string = f"SELECT * FROM historical_cusip_risk(%s, {placeholders})"
    model = pd.read_sql_query(
        sql_string, et_conn, parse_dates=["pricingdate"], params=(date, *df.index)
    )
    model.index = df.index
    df = df.join(model, lsuffix="mark")
    df["curr_ntl"] = df["notional"] * df["factor"]
    df["hy_equiv"] = df["curr_ntl"] * df["delta"]
    return df