aboutsummaryrefslogtreecommitdiffstats
path: root/python/swaption.py
blob: 6a1174a7a912fcd45ab36f1d328e67a41b55dea8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from pyisda.legs import ContingentLeg, FeeLeg
from pyisda.flat_hazard import strike_vec
from pyisda.curve import YieldCurve, BadDay, SpreadCurve
from pyisda.utils import build_yc
from pyisda.cdsone import upfront_charge

import array
import math
from scipy.optimize import brentq
from scipy.integrate import simps
import numpy as np
import datetime
from tranche_functions import GHquad
import pandas as pd
from pandas.tseries.offsets import BDay
from db import dbconn
from psycopg2 import DataError
from dates import prev_immdate

serenitasdb  = dbconn('serenitasdb')

class Index():
    """ minimal class to represent a credit index """
    def __init__(self, start_date, end_date, recovery, fixed_rate):
        """
        start_date : :class:`datetime.date`
            index start_date (Could be issue date, or last imm date)
        end_date : :class:`datetime.date`
            index last date
        recovery :
            recovery rate (between 0 and 1)
        fixed_rate :
            fixed coupon (in bps)
        """
        self.fixed_rate = fixed_rate
        self.notional = 1
        self._start_date = start_date
        self._end_date = end_date
        self.recovery = recovery

        self._fee_leg = FeeLeg(start_date, end_date, True, 1, 1)
        self._default_leg = ContingentLeg(start_date, end_date, 1)
        self._trade_date = None
        self._yc = None
        self._risky_annuity = None
        self._spread = None

    @property
    def start_date(self):
        return self._start_date

    @property
    def end_date(self):
        return self._end_date

    @start_date.setter
    def start_date(self, d):
        self._fee_leg = FeeLeg(d, self.end_date, True, 1, 1)
        self._default_leg = ContingentLeg(d, self.end_date, 1)
        self._start_date = d

    @end_date.setter
    def end_date(self, d):
        self._fee_leg = FeeLeg(self.start_date, d, True, 1, 1)
        self._default_leg = ContingentLeg(self.start_date, d, 1)
        self._end_date = d

    def forward_pv(self, exercise_date):
        step_in_date = exercise_date + datetime.timedelta(days=1)
        value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
        a = self._fee_leg.pv(self.trade_date, step_in_date, self._value_date,
                             self._yc, self._sc, False)
        Delta = self._fee_leg.accrued(step_in_date)
        df = self._yc.discount_factor(value_date)
        if exercise_date > self.trade_date:
            q = math.exp(-self.flat_hazard * year_frac(self._step_in_date, exercise_date))
        else:
            q = 1
        clean_forward_annuity = a - Delta * df * q
        dl_pv = self._default_leg.pv(
            self.trade_date, step_in_date, self._value_date,
            self._yc, self._sc, self.recovery)
        forward_price = self.notional * (dl_pv - clean_forward_annuity * self.fixed_rate*1e-4)
        fep = self.notional * (1 - self.recovery) * (1 - q) * df / \
              self._yc.discount_factor(self._value_date)
        return forward_price + fep

    @property
    def spread(self):
        return self._spread * 1e4

    @spread.setter
    def spread(self, s: float):
        """ s: spread in bps """
        self._spread = s * 1e-4
        self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
                               self._step_in_date, self._value_date,
                               [self.end_date], array.array('d', [self._spread]),
                               self.recovery)
        self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
                                               self._value_date, self._yc,
                                               self._sc, False)
        self._accrued = self._fee_leg.accrued(self._step_in_date)
        self._dl_pv = self._default_leg.pv(
            self.trade_date, self._step_in_date, self._value_date,
            self._yc, self._sc, self.recovery)

    @property
    def flat_hazard(self):
        sc_data = self._sc.inspect()['data']
        ## conversion to continuous compounding
        return math.log(1 + sc_data[0][1])

    @property
    def pv(self):
        return self.notional * (self._dl_pv - self._risky_annuity * self.fixed_rate*1e-4)

    @property
    def clean_pv(self):
        accrued = self.notional * self._accrued * self.fixed_rate*1e-4
        return self.pv + accrued

    @property
    def risky_annuity(self):
        return self._risky_annuity - self._accrued

    @property
    def trade_date(self):
        if self._trade_date is None:
            raise AttributeError('Please set trade_date first')
        else:
            return self._trade_date

    @trade_date.setter
    def trade_date(self, d):
        self.start_date = prev_immdate(pd.Timestamp(d)).date()
        self._yc = build_yc(d, True)
        self._trade_date = d
        self._step_in_date = self.trade_date + datetime.timedelta(days=1)
        self._value_date = (pd.Timestamp(self._trade_date) + 3* BDay()).date()
        if self._spread is not None:
            self.spread = self.spread

    @classmethod
    def from_name(cls, index, series, tenor, trade_date = datetime.date.today()):
        try:
            with serenitasdb.cursor() as c:
                c.execute("SELECT maturity, coupon FROM index_maturity " \
                          "WHERE index=%s AND series=%s AND tenor = %s",
                          (index.upper(), series, tenor))
                maturity, coupon = next(c)
        except DataError as e:
            raise
        else:
            recovery = 0.4 if index.lower() == "ig" else 0.3
            start_date = prev_immdate(pd.Timestamp(trade_date)).date()
            instance = cls(start_date, maturity, recovery, coupon)
            instance.trade_date = trade_date
            return instance

    def __repr__(self):
        return """Notional: {}
Maturity Date: {}
Coupon (bp): {}
Rec Rate: {}""".format(self.notional, self.end_date, self.fixed_rate,
                       self.recovery)

def year_frac(d1, d2, day_count_conv = "Actual/365"):
    """ compute the year fraction between two dates """
    if day_count_conv.lower() in ["actual/365", "act/365"]:
        return (d2-d1).days/365
    elif day_count_conv.lower() in ["actual/360", "act/360"]:
        return (d2-d1).days/360


def calib(S0, fp, exercise_date, exercise_date_settle, index, tilt, w):
    S = S0 * tilt * 1e-4
    a, b = strike_vec(S, index._yc, exercise_date, exercise_date_settle,
                      index.start_date, index.end_date, index.recovery)
    vec = a - index.fixed_rate * b * 1e-4
    df = index._yc.discount_factor(exercise_date_settle) / \
         index._yc.discount_factor(index._value_date)
    return np.inner(vec * df - fp, w)

def g(index, spread, exercise_date):
    """ computes the strike price using the expected forward yield curve """
    step_in_date = exercise_date + datetime.timedelta(days=1)
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    sc = SpreadCurve(exercise_date, index._yc, index.start_date,
                     step_in_date, exercise_date_settle,
                     [index.end_date], array.array('d', [spread * 1e-4]),
                     index.recovery)
    a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
                          index._yc, sc, True)
    dl_pv = index._default_leg.pv(
        exercise_date, step_in_date, exercise_date_settle, index._yc,
        sc, index.recovery)
    return index.notional * (dl_pv - a * index.fixed_rate * 1e-4)

def ATMstrike(index, exercise_date):
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    df = index._yc.discount_factor(exercise_date_settle) / \
         index._yc.discount_factor(index._value_date)
    fp = index.forward_pv(exercise_date)
    closure = lambda S: g(index, S, exercise_date) * df - fp
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if closure(b) > 0:
            break
        b *= eta
    return brentq(closure, a, b)

class Option:
    def __init__(self, index, exercise_date, strike, option_type="payer"):
        self.index = index
        self.exercise_date = exercise_date
        self._T = None
        self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
        self.strike = strike
        self.option_type = option_type.lower()
        self._Z, self._w = GHquad(50)
        self.notional = 1

    @property
    def pv(self):
        fp = self.index.forward_pv(self.exercise_date)/self.index.notional
        T = self.T
        tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
        args = (fp, self.exercise_date, self.exercise_date_settle,
                self.index, tilt, self._w)
        eta = 1.1
        a = self.index.spread
        b = self.index.spread * eta
        while True:
            if calib(*((b,) + args)) > 0:
                break
            b *= eta

        S0 = brentq(calib, a, b, args)

        G = g(self.index, self.strike, self.exercise_date)
        print(S0)
        Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
               (self.sigma * math.sqrt(T))
        if self.option_type == "payer":
            Z = Zstar + np.logspace(0, 1.1, 100) - 1
        elif self.option_type == "receiver":
            Z = Zstar - np.logspace(0, 1.1, 100) + 1
        else:
            raise ValueError("option_type needs to be either 'payer' or 'receiver'")
        S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
        a, b = strike_vec(S * 1e-4, self.index._yc, self.exercise_date,
                          self.exercise_date_settle,
                          self.index.start_date, self.index.end_date, self.index.recovery)
        val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
        df_scale = self.index._yc.discount_factor(self.exercise_date_settle) / \
                   self.index._yc.discount_factor(self.index._value_date)
        return self.notional * (simps(val, Z) * df_scale)

    @property
    def delta(self):
        old_index_pv = self.index.pv
        old_pv = self.pv
        self.index.spread += 0.1
        notional_ratio = self.index.notional/self.option.notional
        delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
        self.index.spread -= 0.1
        return delta


    @property
    def T(self):
        if self._T:
            return self._T
        else:
            return year_frac(self.index.trade_date, self.exercise_date)

    @property
    def gamma(self):
        pass

    @property
    def theta(self):
        old_pv = self.pv
        self._T = self.T - 1/365
        theta = self.pv - old_pv
        self._T = None
        return theta

    @property
    def vega(self):
        old_pv = self.pv
        self.sigma += 0.01
        vega = self.pv - old_pv
        self.sigma -= 0.01
        return vega

def option(index, exercise_date, sigma, K, option_type="payer"):
    """ computes the pv of an option using Pedersen's model """
    fp = index.forward_pv(exercise_date)/index.notional
    #forward_yc = yield_curve.expected_forward_curve(exercise_date)
    #expiry is end of day (not sure if this is right)
    T = year_frac(index.trade_date, exercise_date)
    Z, w = GHquad(50)
    tilt = np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    args = (fp, exercise_date, exercise_date_settle, index, tilt, w)
    ## atm forward is greater than spread
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if calib(*((b,) + args)) > 0:
            break
        b *= eta
    S0 = brentq(calib, a, b, args)
    S =  S0 * tilt
    G = g(index, K, exercise_date)
    handle = lambda Z: g(index, S0 * math.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T)),
                         exercise_date) - G
    Zstar = brentq(handle, -3, 3)
    if option_type.lower() == "payer":
        Z = Zstar + np.logspace(0, 1.1, 300) - 1
    elif option_type.lower() == "receiver":
        Z = Zstar - np.logspace(0, 1.1, 300) + 1
    else:
        raise ValueError("option_type needs to be either 'payer' or 'receiver'")
    S = S0 * np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
    a, b = strike_vec(S, index._yc, exercise_date, exercise_date_settle,
                      index.start_date, index.end_date, index.recovery)
    val = ((a - b * index.fixed_rate)/df - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
    return simps(val, Z) * yield_curve.discount_factor(exercise_date_settle)

if __name__ == "__main__":
    import datetime
    from swaption import Index, Option
    ig26_5yr = Index.from_name('ig', 26, '5yr', datetime.date(2016, 8, 19))
    ig26_5yr.spread = 70
    payer = Option(ig26_5yr, datetime.date(2016, 9, 21), 70)
    payer.sigma = 0.4847
    payer.notional = 100e6