1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
from pyisda.legs import ContingentLeg, FeeLeg
from pyisda.flat_hazard import strike_vec
from pyisda.curve import YieldCurve, BadDay, SpreadCurve
from pyisda.utils import build_yc
from pyisda.cdsone import upfront_charge
import array
import math
from scipy.optimize import brentq
from scipy.integrate import simps
import datetime
from tranche_functions import GHquad
import pandas as pd
from pandas.tseries.offsets import BDay
from db import dbconn
from psycopg2 import DataError
from dates import prev_immdate
serenitasdb = dbconn('serenitasdb')
class Index():
""" minimal class to represent a credit index """
def __init__(self, start_date, end_date, recovery, fixed_rate):
"""
start_date : :class:`datetime.date`
index start_date (Could be issue date, or last imm date)
end_date : :class:`datetime.date`
index last date
recovery :
recovery rate (between 0 and 1)
fixed_rate :
fixed coupon (in bps)
"""
self.fixed_rate = fixed_rate
self.notional = 1
self._start_date = start_date
self._end_date = end_date
self.recovery = recovery
self._fee_leg = FeeLeg(start_date, end_date, True, 1, 1)
self._default_leg = ContingentLeg(start_date, end_date, 1)
self._trade_date = None
self._yc = None
self._risky_annuity = None
self._spread = None
@property
def start_date(self):
return self._start_date
@property
def end_date(self):
return self._end_date
@start_date.setter
def start_date(self, d):
self._fee_leg = FeeLeg(d, self.end_date, True, 1, 1)
self._default_leg = ContingentLeg(d, self.end_date, 1)
self._start_date = d
@end_date.setter
def end_date(self, d):
self._fee_leg = FeeLeg(self.start_date, d, True, 1, 1)
self._default_leg = ContingentLeg(self.start_date, d, 1)
self._end_date = d
def forward_pv(self, exercise_date):
step_in_date = exercise_date + datetime.timedelta(days=1)
value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
a = self._fee_leg.pv(self.trade_date, step_in_date, value_date, self._yc, self._sc, False)
Delta = self._fee_leg.accrued(step_in_date)
df = self._yc.discount_factor(value_date)
if exercise_date > self.trade_date:
Delta *= math.exp(-self.flat_hazard * year_frac(self.trade_date, exercise_date))
clean_forward_annuity = a - Delta * df
print(clean_forward_annuity)
dl_pv = self._default_leg.pv(
self.trade_date, step_in_date, value_date,
self._yc, self._sc, self.recovery)
print(dl_pv)
forward_price = self.notional*(dl_pv - clean_forward_annuity * self.fixed_rate*1e-4)
fep = (1 - self.recovery) * (1 - math.exp(- self.flat_hazard *
year_frac(self.trade_date, exercise_date)))
price = 1/df * forward_price
return price
@property
def spread(self):
return self._spread * 1e4
@spread.setter
def spread(self, s: float):
""" s: spread in bps """
self._spread = s * 1e-4
self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
self._step_in_date, self._value_date,
[self.end_date], array.array('d', [self._spread]),
self.recovery)
self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
self._value_date, self._yc,
self._sc, False)
self._accrued = self._fee_leg.accrued(self._step_in_date)
self._dl_pv = self._default_leg.pv(
self.trade_date, self._step_in_date, self._value_date,
self._yc, self._sc, self.recovery)
@property
def flat_hazard(self):
sc_data = self._sc.inspect()['data']
## conversion to continuous compounding
return math.log(1 + sc_data[0][1])
@property
def pv(self):
return self.notional * (self._dl_pv - self._risky_annuity * self.fixed_rate*1e-4)
@property
def clean_pv(self):
accrued = self.notional * self._accrued * self.fixed_rate*1e-4
return self.pv + accrued
@property
def risky_annuity(self):
return self._risky_annuity - self._accrued
@property
def trade_date(self):
if self._trade_date is None:
raise AttributeError('Please set trade_date first')
else:
return self._trade_date
@trade_date.setter
def trade_date(self, d):
self.start_date = prev_immdate(pd.Timestamp(d)).date()
self._yc = build_yc(d, True)
self._trade_date = d
self._step_in_date = self.trade_date + datetime.timedelta(days=1)
self._value_date = (pd.Timestamp(self._trade_date) + 3* BDay()).date()
@classmethod
def from_name(cls, index, series, tenor, trade_date = datetime.date.today()):
try:
with serenitasdb.cursor() as c:
c.execute("SELECT maturity, coupon FROM index_maturity " \
"WHERE index=%s AND series=%s AND tenor = %s",
(index.upper(), series, tenor))
maturity, coupon = next(c)
except DataError as e:
raise
else:
recovery = 0.4 if index.lower() == "ig" else 0.3
start_date = prev_immdate(pd.Timestamp(trade_date)).date()
instance = cls(start_date, maturity, recovery, coupon)
instance.trade_date = trade_date
return instance
def __repr__(self):
return """Notional: {}
Maturity Date: {}
Coupon (bp): {}
Rec Rate: {}""".format(self.notional, self.end_date, self.fixed_rate,
self.recovery)
def year_frac(d1, d2, day_count_conv = "Actual/365"):
""" compute the year fraction between two dates """
if day_count_conv.lower() in ["actual/365", "act/365"]:
return (d2-d1).days/365
elif day_count_conv.lower() in ["actual/360", "act/360"]:
return (d2-d1).days/360
# def flat_hazard(spread, yc, trade_date=datetime.date.today(),
# cash_settle_date = None,
# start_date = datetime.date.today(),
# end_date = datetime.date(2021, 6, 20),
# recovery_rate = 0.4):
# step_in_date = trade_date + datetime.timedelta(days=1)
# if cash_settle_date is None:
# cash_settle_date = (pd.Timestamp(trade_date) + 3* BDay()).date()
# sc = SpreadCurve(trade_date, yc, start_date, step_in_date,
# cash_settle_date,
# [end_date], array.array('d', [spread]), recovery_rate)
# sc_data = sc.inspect()['data']
# ## conversion to continuous compounding
# hazard_rate = math.log(1 + sc_data[0][1])
# return (hazard_rate, SpreadCurve.from_flat_hazard(trade_date, hazard_rate))
def calib(S0, fp, forward_yield_curve, exercise_date_settle, index, tilt, w):
S = S0 * tilt
a, b = strike_vec(S, forward_yield_curve, exercise_date_settle,
index.start_date, index.end_date, index.recovery)
vec = a - index.fixed_rate * b
df = forward_yield_curve.discount_factor(exercise_date_settle)
return 1/df*np.inner(vec - fp, w)
def g(spread, forward_yield_curve, index):
""" computes the strike price using the expected forward yield curve """
exercise_date = forward_yield_curve.base_date
step_in_date = exercise_date + datetime.timedelta(days=1)
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
sc = SpreadCurve(exercise_date, forward_yield_curve, exercise_date, step_in_date,
exercise_date_settle,
[index.end_date], array.array('d', [spread]), index.recovery)
a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date,
forward_yield_curve, sc, True)
dl_pv = index._default_leg.pv(
exercise_date, step_in_date, exercise_date, forward_yield_curve,
sc, index.recovery)
df = forward_yield_curve.discount_factor(exercise_date_settle)
return 1/df * (dl_pv - a * index.fixed_rate)
def ATMstrike(spread, trade_date, exercise_date, yield_curve, index):
fp = DAforward_price(spread, trade_date, exercise_date, yc, index)
yc_forward = yc.expected_forward_curve(exercise_date)
closure = lambda S: g(S, yc_forward, index) - fp
eta = 1.1
a = spread
b = spread * eta
while True:
if closure(b) > 0:
break
return brentq(closure, a, b)
def option(index, ref, trade_date, exercise_date, yield_curve, sigma, K, option_type="payer"):
""" computes the pv of an option using Pedersen's model """
fp = DAforward_price(ref, trade_date, exercise_date, yield_curve, index)
forward_yc = yield_curve.expected_forward_curve(exercise_date)
#expiry is end of day (not sure if this is right)
T = year_frac(trade_date, exercise_date)
Z, w = GHquad(50)
tilt = np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
args = (fp, forward_yc, exercise_date_settle, index, tilt, w)
## atm forward is greater than spread
eta = 1.1
a = ref
b = ref * eta
while True:
if calib(*((b,) + args)) > 0:
break
b *= eta
S0 = brentq(calib, a, b, args)
S = S0 * tilt
G = g(K, forward_yc, index)
handle = lambda Z: g(S0 * math.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T)),
forward_yc, index) - G
Zstar = brentq(handle, -3, 3)
if option_type.lower() == "payer":
Z = Zstar + np.logspace(0, 1.1, 300) - 1
elif option_type.lower() == "receiver":
Z = Zstar - np.logspace(0, 1.1, 300) + 1
else:
raise ValueError("option_type needs to be either 'payer' or 'receiver'")
S = S0 * np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
df = forward_yc.discount_factor(exercise_date_settle)
a, b = strike_vec(S, forward_yc, exercise_date_settle,
index.start_date, index.end_date, index.recovery)
val = ((a - b * index.fixed_rate)/df - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
return simps(val, Z) * yield_curve.discount_factor(exercise_date_settle)
|