1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
from pyisda.legs import ContingentLeg, FeeLeg
from pyisda.flat_hazard import strike_vec
from pyisda.curve import YieldCurve, BadDay, SpreadCurve
from yieldcurve import YC, ql_to_jp, roll_yc, rate_helpers
from pyisda.cdsone import upfront_charge
from quantlib.settings import Settings
from quantlib.time.api import Date
import array
import math
from scipy.optimize import brentq
from scipy.integrate import simps
import numpy as np
import datetime
from tranche_functions import GHquad
import pandas as pd
from pandas.tseries.offsets import BDay
from db import dbconn
from psycopg2 import DataError
from dates import prev_immdate
from scipy.stats import norm
from termcolor import colored
serenitasdb = dbconn('serenitasdb')
class Index():
""" minimal class to represent a credit index """
def __init__(self, start_date, end_date, recovery, fixed_rate):
"""
start_date : :class:`datetime.date`
index start_date (Could be issue date, or last imm date)
end_date : :class:`datetime.date`
index last date
recovery :
recovery rate (between 0 and 1)
fixed_rate :
fixed coupon (in bps)
"""
self.fixed_rate = fixed_rate
self.notional = 1
self._start_date = start_date
self._end_date = end_date
self.recovery = recovery
self._fee_leg = FeeLeg(start_date, end_date, True, 1, 1)
self._default_leg = ContingentLeg(start_date, end_date, 1)
self._trade_date = None
self._yc = None
self._risky_annuity = None
self._spread = None
@property
def start_date(self):
return self._start_date
@property
def end_date(self):
return self._end_date
@start_date.setter
def start_date(self, d):
self._fee_leg = FeeLeg(d, self.end_date, True, 1, 1)
self._default_leg = ContingentLeg(d, self.end_date, 1)
self._start_date = d
@end_date.setter
def end_date(self, d):
self._fee_leg = FeeLeg(self.start_date, d, True, 1, 1)
self._default_leg = ContingentLeg(self.start_date, d, 1)
self._end_date = d
def forward_annuity(self, exercise_date):
step_in_date = exercise_date + datetime.timedelta(days=1)
value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
a = self._fee_leg.pv(self.trade_date, step_in_date, self._value_date,
self._yc, self._sc, False)
Delta = self._fee_leg.accrued(step_in_date)
df = self._yc.discount_factor(value_date)
if exercise_date > self.trade_date:
q = math.exp(-self.flat_hazard * year_frac(self._step_in_date, exercise_date))
else:
q = 1
return a - Delta * df * q
def forward_pv(self, exercise_date):
"""This is default adjusted forward price at time exercise_date"""
step_in_date = exercise_date + datetime.timedelta(days=1)
value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
a = self._fee_leg.pv(self.trade_date, step_in_date, self._value_date,
self._yc, self._sc, False)
Delta = self._fee_leg.accrued(step_in_date)
df = self._yc.discount_factor(value_date)
if exercise_date > self.trade_date:
q = math.exp(-self.flat_hazard * (year_frac(self.trade_date, exercise_date)-0.5/365))
else:
q = 1
clean_forward_annuity = a - Delta * df * q
dl_pv = self._default_leg.pv(
self.trade_date, step_in_date, self._value_date,
self._yc, self._sc, self.recovery)
forward_price = self.notional * (dl_pv - clean_forward_annuity * self.fixed_rate*1e-4)
fep = self.notional * (1 - self.recovery) * (1 - q)
return forward_price * self._yc.discount_factor(self._value_date) / df + fep
@property
def spread(self):
return self._spread * 1e4
@spread.setter
def spread(self, s: float):
""" s: spread in bps """
self._spread = s * 1e-4
self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
self._step_in_date, self._value_date,
[self.end_date], array.array('d', [self._spread]),
self.recovery)
self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
self._value_date, self._yc,
self._sc, False)
self._dl_pv = self._default_leg.pv(
self.trade_date, self._step_in_date, self._value_date,
self._yc, self._sc, self.recovery)
@property
def flat_hazard(self):
sc_data = self._sc.inspect()['data']
## conversion to continuous compounding
return math.log(1 + sc_data[0][1])
@property
def pv(self):
return self.notional * (self._dl_pv - self._risky_annuity * self.fixed_rate * 1e-4)
@property
def accrued(self):
return - self.notional * self._accrued * self.fixed_rate * 1e-4
@property
def days_accrued(self):
return int(self._accrued * 360)
@property
def clean_pv(self):
return self.pv - self.accrued
@property
def price(self):
return 100*(1-self.clean_pv/self.notional)
@property
def DV01(self):
old_pv = self.pv
self.spread +=1
dv01 = self.pv - old_pv
self.spread -= 1
return dv01
@property
def IRDV01(self):
old_pv = self.pv
old_yc = self._yc
for rh in self._helpers:
rh.quote += 1e-4
self._yc = ql_to_jp(self._ql_yc)
self.spread = self.spread ## to force recomputation
new_pv = self.pv
for r in self._helpers:
r.quote -= 1e-4
self._yc = old_yc
self.spread = self.spread
return new_pv - old_pv
@property
def rec_risk(self):
old_pv = self.pv
self.recovery -= 0.01
self.spread = self.spread
pv_minus = self.pv
self.recovery += 0.02
self.spread = self.spread
pv_plus = self.pv
self.recovery -= 0.01
self.spread = self.spread
return (pv_plus - pv_minus)/2
@property
def risky_annuity(self):
return self._risky_annuity - self._accrued
@property
def trade_date(self):
if self._trade_date is None:
raise AttributeError('Please set trade_date first')
else:
return self._trade_date
@trade_date.setter
def trade_date(self, d):
self.start_date = prev_immdate(pd.Timestamp(d)).date()
settings = Settings()
settings.evaluation_date = Date.from_datetime(d)
self._helpers = rate_helpers(self.currency)
self._ql_yc = YC(self._helpers)
self._yc = ql_to_jp(self._ql_yc)
self._trade_date = d
self._step_in_date = self.trade_date + datetime.timedelta(days=1)
self._accrued = self._fee_leg.accrued(self._step_in_date)
self._value_date = (pd.Timestamp(self._trade_date) + 3* BDay()).date()
if self._spread is not None:
self.spread = self.spread
@classmethod
def from_name(cls, index, series, tenor, trade_date = datetime.date.today(),
notional = 10e6):
try:
with serenitasdb.cursor() as c:
c.execute("SELECT maturity, coupon FROM index_maturity " \
"WHERE index=%s AND series=%s AND tenor = %s",
(index.upper(), series, tenor))
maturity, coupon = next(c)
except DataError as e:
raise
else:
recovery = 0.4 if index.lower() == "ig" else 0.3
start_date = prev_immdate(pd.Timestamp(trade_date)).date()
instance = cls(start_date, maturity, recovery, coupon)
instance.name = "{}{} {}".format(index.upper(), series, tenor.upper())
if index.upper() in ["IG", "HY"]:
instance.currency = "USD"
else:
instance.currency = "EUR"
instance.notional = notional
instance.trade_date = trade_date
return instance
def __repr__(self):
if self.days_accrued > 1:
accrued_str = "Accrued ({} Days)".format(self.days_accrued)
else:
accrued_str = "Accrued ({} Day)".format(self.days_accrued)
s = ["Trade Date\t{}".format(self.trade_date),
"Trd Spread (bp)\t{}\tCoupon (bp)\t{}".format(self.spread, self.fixed_rate),
"",
colored("Calculator", attrs = ['bold']),
"{:<20}\t{:>15}".format("Valuation Date", '{:%m/%d/%y}'.format(self.trade_date)),
"{:<20}\t{:>15}".format("Cash Settled On", '{:%m/%d/%y}'.format(self._value_date)),
"",
"{:<20}\t{:>15.8f}\t\t{:<20}\t{:>8,.2f}".format("Price", self.price, "Spread DV01", self.DV01),
"{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>8,.2f}".format("Principal", self.clean_pv, "IR DV01", self.IRDV01),
"{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>8,.2f}".format(accrued_str, self.accrued, "Rec Risk (1%)", self.rec_risk),
"{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>8,.2f}".format("Cash Amount", self.pv, "Def Exposure", self.rec_risk)]
return "\n".join(s)
def year_frac(d1, d2, day_count_conv = "Actual/365"):
""" compute the year fraction between two dates """
if day_count_conv.lower() in ["actual/365", "act/365"]:
return (d2-d1).days/365
elif day_count_conv.lower() in ["actual/360", "act/360"]:
return (d2-d1).days/360
def calib(S0, fp, exercise_date, exercise_date_settle, index, tilt, w):
S = S0 * tilt * 1e-4
a, b = strike_vec(S, index._yc, exercise_date, exercise_date_settle,
index.start_date, index.end_date, index.recovery)
vec = a - index.fixed_rate * b * 1e-4
df = index._yc.discount_factor(exercise_date_settle) / \
index._yc.discount_factor(index._value_date)
return np.inner(vec * df - fp, w)
def g(index, spread, exercise_date):
""" computes the strike price using the expected forward yield curve """
step_in_date = exercise_date + datetime.timedelta(days=1)
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
sc = SpreadCurve(exercise_date, index._yc, index.start_date,
step_in_date, exercise_date_settle,
[index.end_date], array.array('d', [spread * 1e-4]),
index.recovery)
a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
index._yc, sc, True)
dl_pv = index._default_leg.pv(
exercise_date, step_in_date, exercise_date_settle, index._yc,
sc, index.recovery)
return index.notional * (dl_pv - a * index.fixed_rate * 1e-4)
def ATMstrike(index, exercise_date):
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
df = index._yc.discount_factor(exercise_date_settle) / \
index._yc.discount_factor(index._value_date)
fp = index.forward_pv(exercise_date)
closure = lambda S: g(index, S, exercise_date) * df - fp
eta = 1.1
a = index.spread
b = index.spread * eta
while True:
if closure(b) > 0:
break
b *= eta
return brentq(closure, a, b)
class Option:
def __init__(self, index, exercise_date, strike, option_type="payer"):
self.index = index
self.exercise_date = exercise_date
self._T = None
self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
self.strike = strike
self.option_type = option_type.lower()
self._Z, self._w = GHquad(50)
self.notional = 1
@property
def pv(self):
fp = self.index.forward_pv(self.exercise_date)/self.index.notional
T = self.T
tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
args = (fp, self.exercise_date, self.exercise_date_settle,
self.index, tilt, self._w)
eta = 1.1
a = self.index.spread
b = self.index.spread * eta
while True:
if calib(*((b,) + args)) > 0:
break
b *= eta
S0 = brentq(calib, a, b, args)
G = g(self.index, self.strike, self.exercise_date)
print(S0)
Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
(self.sigma * math.sqrt(T))
if self.option_type == "payer":
Z = Zstar + np.logspace(0, 1.1, 100) - 1
elif self.option_type == "receiver":
Z = Zstar - np.logspace(0, 1.1, 100) + 1
else:
raise ValueError("option_type needs to be either 'payer' or 'receiver'")
S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
a, b = strike_vec(S * 1e-4, self.index._yc, self.exercise_date,
self.exercise_date_settle,
self.index.start_date, self.index.end_date, self.index.recovery)
val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
df_scale = self.index._yc.discount_factor(self.exercise_date_settle) / \
self.index._yc.discount_factor(self.index._value_date)
return self.notional * (simps(val, Z) * df_scale)
@property
def delta(self):
old_index_pv = self.index.pv
old_pv = self.pv
self.index.spread += 0.1
notional_ratio = self.index.notional/self.option.notional
delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
self.index.spread -= 0.1
return delta
@property
def T(self):
if self._T:
return self._T
else:
return year_frac(self.index.trade_date, self.exercise_date)
@property
def gamma(self):
pass
@property
def theta(self):
old_pv = self.pv
self._T = self.T - 1/365
theta = self.pv - old_pv
self._T = None
return theta
@property
def vega(self):
old_pv = self.pv
self.sigma += 0.01
vega = self.pv - old_pv
self.sigma -= 0.01
return vega
def option(index, exercise_date, sigma, K, option_type="payer"):
""" computes the pv of an option using Pedersen's model """
fp = index.forward_pv(exercise_date)/index.notional
#forward_yc = yield_curve.expected_forward_curve(exercise_date)
#expiry is end of day (not sure if this is right)
T = year_frac(index.trade_date, exercise_date)
Z, w = GHquad(50)
tilt = np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
args = (fp, exercise_date, exercise_date_settle, index, tilt, w)
## atm forward is greater than spread
eta = 1.1
a = index.spread
b = index.spread * eta
while True:
if calib(*((b,) + args)) > 0:
break
b *= eta
S0 = brentq(calib, a, b, args)
S = S0 * tilt
G = g(index, K, exercise_date)
handle = lambda Z: g(index, S0 * math.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T)),
exercise_date) - G
Zstar = brentq(handle, -3, 3)
if option_type.lower() == "payer":
Z = Zstar + np.logspace(0, 1.1, 300) - 1
elif option_type.lower() == "receiver":
Z = Zstar - np.logspace(0, 1.1, 300) + 1
else:
raise ValueError("option_type needs to be either 'payer' or 'receiver'")
S = S0 * np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
a, b = strike_vec(S, index._yc, exercise_date, exercise_date_settle,
index.start_date, index.end_date, index.recovery)
val = ((a - b * index.fixed_rate)/df - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
return simps(val, Z) * yield_curve.discount_factor(exercise_date_settle)
if __name__ == "__main__":
import datetime
from swaption import Index, Option
ig26_5yr = Index.from_name('ig', 26, '5yr', datetime.date(2016, 8, 19))
ig26_5yr.spread = 70
payer = Option(ig26_5yr, datetime.date(2016, 9, 21), 70)
payer.sigma = 0.4847
payer.notional = 100e6
|