1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
import datetime
import pandas as pd
from psycopg2.extensions import connection
from risk.swaptions import get_swaption_portfolio
from risk.indices import get_index_portfolio
from pandas.tseries.offsets import BDay
from pyisda.date import previous_twentieth
from typing import Tuple
def get_index_pv(
start_date: datetime.date,
end_date: datetime.date,
conn: connection,
strategies: Tuple[str] = None,
):
dr = pd.bdate_range(start_date, end_date)
pvs = []
daily = []
dates = []
for d in dr:
prev_day = (d - BDay()).date()
if previous_twentieth(d, roll=True) == d.date():
accrued = 0.0
for t in portf.trades:
d, amount = t._fee_leg.cashflows[0]
accrued -= amount * t.notional * t.factor * t.fixed_rate * 1e-4
else:
accrued = 0.0
portf = get_index_portfolio(prev_day, conn, strategies)
nav = 0.0
with conn.cursor() as c:
c.execute(
"SELECT upfront FROM cds WHERE trade_date=%s " "AND folder in %s",
(prev_day, strategies),
)
for (fee,) in c:
nav += fee
daily.append(nav + accrued)
pvs.append(portf.pv)
dates.append(prev_day)
df = pd.DataFrame({"pv": pvs, "daily": daily}, index=pd.to_datetime(dates))
return df
def get_swaption_pv(
start_date: datetime.date, end_date: datetime.date, conn: connection, **kwargs
):
dr = pd.bdate_range(start_date, end_date)
pv = []
daily = []
dates = []
for d in dr:
prev_day = (d - BDay()).date()
portf = get_swaption_portfolio(prev_day, conn, **kwargs)
nav = 0.0
# add terminations
with conn.cursor() as c:
c.execute(
"SELECT termination_fee "
"FROM swaptions WHERE termination_date=%s AND folder != 'STEEP'",
(prev_day,),
)
for (fee,) in c:
nav += fee
# add new trades
with conn.cursor() as c:
c.execute(
"SELECT notional * price/100 * (CASE WHEN buysell THEN -1. ELSE 1. END) "
"FROM swaptions WHERE trade_date=%s AND folder != 'STEEP'",
(prev_day,),
)
for (fee,) in c:
nav += fee
dates.append(prev_day)
pv.append(portf.pv)
daily.append(nav)
df = pd.DataFrame({"pv": pv, "daily": daily}, index=pd.to_datetime(dates))
return df
if __name__ == "__main__":
import argparse
from utils.db import dbconn
dawndb = dbconn("dawndb")
parser = argparse.ArgumentParser()
parser.add_argument("start_date", type=datetime.datetime.fromisoformat)
parser.add_argument("end_date", type=datetime.datetime.fromisoformat)
parser.add_argument(
"-e",
"--external",
action="store_true",
default=False,
dest="use_external",
help="use brokers' marks",
)
parser.add_argument(
"-s",
"--source",
action="append",
default=["GS"],
dest="source_list",
help="quote source",
)
args = parser.parse_args()
df_index = get_index_pv(
args.start_date, args.end_date, dawndb, ("IGOPTDEL", "HYOPTDEL")
)
df_swaption = get_swaption_pv(conn=dawndb, **vars(args))
pnl_index = df_index.pv.diff() + df_index.daily
pnl_swaption = df_swaption.pv.diff() + df_swaption.daily
pnl = pd.concat([pnl_index, pnl_swaption], keys=["index", "swaption"], axis=1)
print(
pd.concat(
[pnl.sum(axis=1), pnl.sum(axis=1).cumsum()],
axis=1,
keys=["daily", "cumulative"],
)
)
|