1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
import datetime
import pandas as pd
from analytics.index import CreditIndex
from db import serenitas_pool
from statistics import median
def get_refids(
conn,
index,
series,
expiry,
value_date=datetime.date.today(),
sources=["GS", "MS", "CITI"],
):
sql_str = (
"SELECT ref_id, ref, quotedate FROM swaption_ref_quotes "
"WHERE quotedate::date=%s "
" AND quote_source=%s "
" AND index=%s AND series=%s"
" AND expiry=%s "
"ORDER BY quotedate DESC LIMIT 1"
)
d = {}
with conn.cursor() as c:
for s in sources:
c.execute(sql_str, (value_date, s, index, series, expiry))
d[s] = c.fetchone()
return d
def adjust_stacks(
index_type,
series,
expiry,
value_date=datetime.date.today(),
sources=["GS", "MS", "CITI"],
common_ref=None,
):
conn = serenitas_pool.getconn()
d = get_refids(conn, index_type, series, expiry, value_date, sources)
if all(v is None for v in d.values()):
raise ValueError("no quotes")
if common_ref is None:
common_ref = median(v[1] for v in d.values())
index = CreditIndex(
index_type, series, "5yr", value_date=value_date, notional=10000.0
)
index.ref = common_ref
old_pv = index.pv
quotes = {}
for s, (ref_id, ref, _) in d.items():
index.ref = ref
dindex_pv = index.pv - old_pv
df = pd.read_sql_query(
"SELECT strike, pay_bid, pay_offer, delta_pay, "
"rec_bid, rec_offer, delta_rec FROM swaption_quotes "
"WHERE ref_id=%s ORDER BY strike",
conn,
params=(ref_id,),
index_col=["strike"],
)
if s == "GS":
df["delta_rec"] = 1 - df["delta_pay"]
if index_type == "HY":
df[["pay_bid", "pay_offer", "rec_bid", "rec_offer"]] *= 100
if s == "CITI":
df["delta_rec"] *= -1
if dindex_pv != 0.0:
df[["pay_bid", "pay_offer"]] = df[["pay_bid", "pay_offer"]].sub(
df.delta_pay * dindex_pv, axis=0
)
df[["rec_bid", "rec_offer"]] = df[["rec_bid", "rec_offer"]].add(
df.delta_rec * dindex_pv, axis=0
)
quotes[s] = df
quotes = pd.concat(quotes, names=["source"])
quotes = quotes.swaplevel("source", "strike").sort_index()
inside_quotes = pd.concat(
[
quotes[["pay_bid", "rec_bid"]].groupby(level="strike").max(),
quotes[["pay_offer", "rec_offer"]].groupby(level="strike").min(),
],
axis=1,
).sort_index(axis=1)
quotes = quotes.unstack("source")
d = {}
for k in ["pay_bid", "rec_bid"]:
# quotes[k].style.apply(highlight_max, axis=1)
df = pd.concat([quotes[k], inside_quotes[k]], axis=1)
d[k] = df.rename(columns={k: "Best"})
for k in ["pay_offer", "rec_offer"]:
# quotes[k].style.apply(highlight_min, axis=1)
df = pd.concat([inside_quotes[k], quotes[k]], axis=1)
d[k] = df.rename(columns={k: "Best"})
serenitas_pool.putconn(conn)
return common_ref, pd.concat(d, axis=1)
|