1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
from blist import sorteddict
from collections import namedtuple
from contextlib import closing
from itertools import islice
import datetime
import lz4.block
import os
import pandas as pd
from quantlib.settings import Settings
from quantlib.time.api import (WeekendsOnly, Japan,
Date, Period, Days, Schedule, Annual,
Semiannual, today, Actual360, Months, Years,
ModifiedFollowing, Thirty360, Actual365Fixed)
from quantlib.currency.api import USDCurrency, EURCurrency, JPYCurrency
from quantlib.indexes.ibor_index import IborIndex
from quantlib.termstructures.yields.api import (
PiecewiseYieldCurve, DepositRateHelper, SwapRateHelper, BootstrapTrait, Interpolator)
from quantlib.time.date import pydate_from_qldate
import numpy as np
from quantlib.quotes import SimpleQuote
from utils.db import dbconn, serenitas_engine
from pyisda.curve import YieldCurve
from pyisda.date import BadDay
import warnings
def load_curves(currency="USD", date=None):
"""load the prebuilt curves from the database"""
sql_str = f"SELECT * FROM {currency}_curves"
if date:
sql_str += " WHERE effective_date=%s"
with closing(dbconn('serenitasdb')) as conn:
with conn.cursor() as c:
if date:
c.execute(sql_str, (date,))
if c:
_, curve = c.fetchone()
return YieldCurve.from_bytes(lz4.block.decompress(curve))
else:
c.execute(sql_str)
return sorteddict([
(d, YieldCurve.from_bytes(lz4.block.decompress(curve)))
for d, curve in c])
def get_curve(effective_date, currency="USD"):
if f'_{currency}_curves' in globals():
curves = globals()[f'_{currency}_curves']
else:
curves = globals()[f'_{currency}_curves'] = load_curves(currency)
if isinstance(effective_date, datetime.datetime):
effective_date = effective_date.date()
if effective_date > curves.keys()[-1]:
last_curve = curves[curves.keys()[-1]]
return last_curve
if effective_date in curves:
return curves[effective_date]
else:
warnings.warn("cache miss for date: {}".format(effective_date),
RuntimeWarning)
ql_yc = YC(currency=currency, evaluation_date=effective_date)
jp_yc = ql_to_jp(ql_yc)
curves[effective_date] = jp_yc
return jp_yc
def getMarkitIRData(effective_date=datetime.date.today(),
currency="USD"):
conn = dbconn("serenitasdb")
sql_str = "SELECT * FROM {}_rates WHERE effective_date <= %s " \
"ORDER BY effective_date DESC LIMIT 1".format(currency)
with conn.cursor() as c:
c.execute(sql_str, (effective_date,))
col_names = [col[0] for col in c.description]
r = c.fetchone()
MarkitData = {'effectiveasof': r[0],
'deposits': [(t, rate) for t, rate in zip(col_names[1:7], r[1:7])
if rate is not None],
'swaps': [(t, rate) for t, rate in zip(col_names[7:], r[7:])
if rate is not None]}
return MarkitData
def get_futures_data(date=datetime.date.today()):
futures_file = os.path.join(os.environ['DATA_DIR'], "Yield Curves",
"futures-{0:%Y-%m-%d}.csv".format(date))
with open(futures_file) as fh:
quotes = [float(line.split(",")[1]) for line in fh]
return quotes
def get_curve_params(currency):
if currency == "USD":
currency = USDCurrency()
calendar = WeekendsOnly()
fixed_dc = Thirty360()
floating_dc = Actual360()
mm_dc = Actual360()
floating_freq = Period(3, Months)
fixed_freq = Semiannual
elif currency == "EUR":
currency = EURCurrency()
calendar = WeekendsOnly()
fixed_dc = Thirty360()
floating_dc = Actual360()
mm_dc = Actual360()
floating_freq = Period(6, Months)
fixed_freq = Annual
elif currency == "JPY":
currency = JPYCurrency()
calendar = Japan()
fixed_dc = Actual365Fixed()
floating_dc = Actual360()
mm_dc = Actual360()
floating_freq = Period(6, Months)
fixed_freq = Semiannual
CurveParams = namedtuple('CurveParam',
'currency, calendar, fixed_dc, floating_dc, '
'mm_dc, floating_freq, fixed_freq')
return CurveParams(currency, calendar, fixed_dc, floating_dc, mm_dc,
floating_freq, fixed_freq)
def rate_helpers(currency="USD", MarkitData=None, evaluation_date=None):
"""Utility function to build a list of RateHelpers
Parameters
----------
currency : str, optional
One of `USD`, `EUR` at the moment, defaults to `USD`
MarkitData : dict, optional
MarkitData for the current evaluation_date
Returns
-------
helpers : list
List of QuantLib RateHelpers
"""
settings = Settings()
if evaluation_date is None:
evaluation_date = pydate_from_qldate(settings.evaluation_date)
if isinstance(evaluation_date, pd.Timestamp):
evaluation_date = evaluation_date.date()
if not MarkitData:
MarkitData = getMarkitIRData(evaluation_date, currency)
if MarkitData['effectiveasof'] != evaluation_date:
warnings.warn("Yield curve effective date: {0} doesn't "
"match the evaluation date: {1}".format(
MarkitData['effectiveasof'],
evaluation_date),
RuntimeWarning)
settings.evaluation_date = Date.from_datetime(MarkitData['effectiveasof'])
params = get_curve_params(currency)
isda_ibor = IborIndex("IsdaIbor", params.floating_freq, 2,
params.currency, params.calendar, ModifiedFollowing,
False, params.floating_dc)
# we use SimpleQuotes, rather than just float to make it updateable
deps = [DepositRateHelper(SimpleQuote(q), Period(t), 2, params.calendar,
ModifiedFollowing, False, params.mm_dc)
for t, q in MarkitData['deposits']]
# this matches with bloomberg, but according to Markit, maturity should be unadjusted
swaps = [SwapRateHelper.from_tenor(SimpleQuote(q), Period(t), params.calendar,
params.fixed_freq, ModifiedFollowing,
params.fixed_dc, isda_ibor) for t, q in MarkitData['swaps']]
return deps + swaps
def get_dates(date, currency="USD"):
"""computes the list of curve dates on a given date"""
if currency == "USD":
month_periods = [1, 2, 3, 6, 12]
year_periods = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30]
calendar = WeekendsOnly()
settle_date = calendar.advance(Date.from_datetime(date), 2, 0)
deposit_dates = [calendar.advance(settle_date, period=Period(m, Months),
convention=ModifiedFollowing)
for m in month_periods]
swap_dates = [calendar.advance(settle_date, period=Period(y, Years),
convention=ModifiedFollowing)
for y in year_periods]
dates = deposit_dates + swap_dates
return [pydate_from_qldate(d) for d in dates]
def roll_yc(yc, forward_date):
"""returns the expected forward yield cuve on a forward_date"""
dates = [d for d in yc.dates if d >= forward_date]
dfs = np.array([yc.discount_factor(d, forward_date) for d in dates])
return YieldCurve.from_discount_factors(forward_date, dates, dfs, 'ACT/365F')
def YC(helpers=None, currency="USD", MarkitData=None, evaluation_date=None,
fixed=False, extrapolation=False):
calendar = WeekendsOnly()
settings = Settings()
if evaluation_date:
settings.evaluation_date = Date.from_datetime(evaluation_date)
if helpers is None: # might roll back the evaluation date
helpers = rate_helpers(currency, MarkitData, evaluation_date)
if fixed:
_yc = PiecewiseYieldCurve.from_reference_date(
BootstrapTrait.Discount, Interpolator.LogLinear,
settings.evaluation_date, helpers, Actual365Fixed())
else:
_yc = PiecewiseYieldCurve(BootstrapTrait.Discount,
Interpolator.LogLinear,
0, calendar, helpers, Actual365Fixed())
if extrapolation:
_yc.extrapolation = True
return _yc
def jpYC(effective_date, currency="USD", MarkitData=None):
if MarkitData is None:
markit_data = getMarkitIRData(effective_date,
currency)
periods, rates = zip(*markit_data['deposits'])
periods_swaps, rates_swaps = zip(*markit_data['swaps'])
types = 'M'*len(periods) + 'S'*len(periods_swaps)
rates = np.array(rates + rates_swaps)
periods = list(periods + periods_swaps)
if currency == "USD":
fixed_period = '6M'
float_period = '3M'
elif currency == 'EUR':
fixed_period = '12M'
float_period = '6M'
return YieldCurve(effective_date, types, periods, rates, 'ACT/360',
fixed_period, float_period, '30/360', 'ACT/360',
BadDay.MODIFIED)
def ql_to_jp(ql_yc):
"""convert a QuantLib yield curve to a JP's one"""
if ql_yc._trait == BootstrapTrait.Discount:
dfs = np.array(ql_yc.data[1:])
dates = [pydate_from_qldate(d) for d in ql_yc.dates[1:]]
trade_date = pydate_from_qldate(ql_yc.dates[0])
return YieldCurve.from_discount_factors(trade_date, dates, dfs, 'ACT/365F')
else:
raise RuntimeError('QuantLib curve needs to use Discount trait')
def build_curves(currency="USD"):
settings = Settings()
params = get_curve_params(currency)
isda_ibor = IborIndex("IsdaIbor", params.floating_freq, 2,
params.currency, params.calendar, ModifiedFollowing,
False, params.floating_dc)
rates = pd.read_sql_table(f"{currency.lower()}_rates",
serenitas_engine,
index_col='effective_date')
quotes = [SimpleQuote() for c in rates.columns]
gen = zip(quotes, rates.columns)
deps = [DepositRateHelper(q, Period(t), 2, params.calendar, ModifiedFollowing,
False, params.mm_dc) for q, t in islice(gen, 6)]
swaps = [SwapRateHelper.from_tenor(q, Period(t), params.calendar,
params.fixed_freq, ModifiedFollowing,
params.fixed_dc, isda_ibor) for q, t in gen]
sql_str = f"INSERT INTO {currency}_curves VALUES(%s, %s) ON CONFLICT DO NOTHING"
conn = serenitas_engine.raw_connection()
for effective_date, curve_data in rates.iterrows():
print(effective_date)
settings.evaluation_date = Date.from_datetime(effective_date)
for q, val in zip(quotes, curve_data):
q.value = val
valid_deps = [d for d in deps if not np.isnan(d.quote)]
valid_swaps = [s for s in swaps if not np.isnan(s.quote)]
ql_yc = PiecewiseYieldCurve(BootstrapTrait.Discount,
Interpolator.LogLinear,
0, calendar, valid_deps + valid_swaps,
Actual365Fixed())
jp_yc = ql_to_jp(ql_yc)
with conn.cursor() as c:
c.execute(sql_str, (effective_date, lz4.block.compress(jp_yc.__getstate__())))
conn.commit()
conn.close()
if __name__ == "__main__":
# evaluation_date = Date(29, 4, 2014)
Settings.instance().evaluation_date = today()
import matplotlib.pyplot as plt
from quantlib.time.api import calendar_from_name
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
helpers = rate_helpers("USD")
ts = YC(helpers)
cal = calendar_from_name('USA')
p1 = Period('1M')
p2 = Period('2M')
p3 = Period('3M')
p6 = Period('6M')
p12 = Period('12M')
sched = Schedule.from_rule(ts.reference_date, ts.reference_date + Period('5Y'), Period('3M'), cal)
days = [pydate_from_qldate(d) for d in sched]
f3 = [ts.forward_rate(d, d + p3, Actual360(), 0).rate for d in sched]
f6 = [ts.forward_rate(d, d + p6, Actual360(), 0).rate for d in sched]
f2 = [ts.forward_rate(d, d + p2, Actual360(), 0).rate for d in sched]
plt.plot(days, f2, days, f3, days, f6)
|