aboutsummaryrefslogtreecommitdiffstats
path: root/python/yieldcurve.py
blob: 044a51656eaad7f6c3866605837c7ebf9f34d75b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from common import root
import os
import datetime
from quantlib.settings import Settings
from quantlib.time.api import (WeekendsOnly, Date, Period, Days, Schedule, Annual,
                               Semiannual, today, Actual360, Months, Years,
                               ModifiedFollowing, Thirty360, Actual365Fixed,
                               calendar_from_name)
from quantlib.currency.api import USDCurrency, EURCurrency
from quantlib.indexes.ibor_index import IborIndex
from quantlib.termstructures.yields.api import (
    PiecewiseYieldCurve, DepositRateHelper, SwapRateHelper, BootstrapTrait, Interpolator)
from quantlib.time.date import pydate_from_qldate

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from quantlib.quotes import SimpleQuote
from db import dbconn
from pyisda.curve import YieldCurve

def getMarkitIRData(effective_date = datetime.date.today(),
                    currency = "USD"):
    conn = dbconn("serenitasdb")
    sql_str = "SELECT * FROM {}_rates WHERE  effective_date = %s".format(currency)
    with conn.cursor() as c:
        c.execute(sql_str, (effective_date,))
        col_names = [col[0] for col in c.description]
        r = c.fetchone()
    MarkitData = {'effectiveasof': r[0],
                  'deposits': [(t, r[i]) for i, t in \
                               enumerate(col_names[1:7], 1) if r[i] is not None],
                  'swaps': [(t, r[i]) for i, t in enumerate(col_names[7:], 7)]}
    return MarkitData

def get_futures_data(date = datetime.date.today()):
    futures_file = os.path.join(root, "data", "Yield Curves",
                                "futures-{0:%Y-%m-%d}.csv".format(date))
    with open(futures_file) as fh:
        quotes = [float(line.split(",")[1]) for line in fh]
    return quotes

def rate_helpers(currency="USD", MarkitData=None):
    """Util function to build a list of RateHelpers

    Parameters
    ----------
    currency : str, optional
       One of `USD`, `EUR` at the moment, defaults to `USD`
    MarkitData : dict, optional
       MarkitData for the current evaluation_date

    Returns
    -------
    helpers : list
       List of QuantLib RateHelpers
    """
    settings = Settings()
    if not MarkitData:
        MarkitData = getMarkitIRData(pydate_from_qldate(settings.evaluation_date), currency)
        if MarkitData['effectiveasof'] != pydate_from_qldate(settings.evaluation_date):
            raise RuntimeError("Yield curve effective date: {0} doesn't " \
                               "match the evaluation date: {1}".format(
                                   MarkitData['effectiveasof'],
                                   pydate_from_qldate(settings.evaluation_date)))
    calendar = WeekendsOnly()
    if currency == "USD":
        isda_ibor = IborIndex("IsdaIbor", Period(3, Months), 2, USDCurrency(), calendar,
                              ModifiedFollowing, False, Actual360())
        fix_freq = Semiannual
    elif currency == "EUR":
        isda_ibor = IborIndex("IsdaIbor", Period(6, Months), 2, EURCurrency(), calendar,
                              ModifiedFollowing, False, Actual360())
        fix_freq = Annual
    # we use SimpleQuotes, rather than just float to make it updateable
    deps = [DepositRateHelper(SimpleQuote(q), Period(t), 2, calendar, ModifiedFollowing, False, Actual360())
            for t, q in MarkitData['deposits']]
    # this matches with bloomberg, but according to Markit, maturity should be unadjusted
    swaps = [SwapRateHelper.from_tenor(SimpleQuote(q), Period(t), calendar, fix_freq, ModifiedFollowing,
                                       Thirty360(), isda_ibor) for t, q in MarkitData['swaps']]
    return deps + swaps

def get_dates(date, currency="USD"):
    """computes the list of curve dates on a given date"""
    if currency == "USD":
        month_periods = [1, 2, 3, 6, 12]
    year_periods = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30]
    calendar = WeekendsOnly()
    settle_date = calendar.advance(Date.from_datetime(date), 2, 0)
    deposit_dates = [calendar.advance(settle_date, period = Period(m, Months),
                                      convention=ModifiedFollowing) \
                     for m in month_periods]
    swap_dates = [calendar.advance(settle_date, period = Period(y, Years),
                                   convention=ModifiedFollowing) \
                     for y in year_periods]
    dates = deposit_dates + swap_dates
    return [pydate_from_qldate(d) for d in dates]

def roll_yc(yc, forward_date):
    """returns the expected forward yield cuve on a forward_date"""
    dates = get_dates(forward_date)
    dfs = np.array([yc.discount_factor(d, forward_date) for d in dates])
    return YieldCurve.from_discount_factors(forward_date, dates, dfs, 'ACT/365F')

def YC(helpers = None, currency="USD", MarkitData=None):
    if helpers is None:
        helpers = rate_helpers(currency, MarkitData)
    calendar = WeekendsOnly()
    return PiecewiseYieldCurve(BootstrapTrait.Discount, Interpolator.LogLinear,
                               0, calendar, helpers, Actual365Fixed())
def ql_to_jp(ql_yc):
    """convert a QuantLib yield curve to a JP's one"""
    if ql_yc._trait == BootstrapTrait.Discount:
        dfs = np.array(ql_yc.data[1:])
        dates = [pydate_from_qldate(d) for d in ql_yc.dates[1:]]
        trade_date = pydate_from_qldate(ql_yc.dates[0])
        return YieldCurve.from_discount_factors(trade_date, dates, dfs, 'ACT/365F')
    else:
        raise RuntimeErrror('QuantLib curve needs to use Discount trait')

if __name__=="__main__":
    #evaluation_date = Date(29, 4, 2014)
    Settings.instance().evaluation_date = today()
    ts = YC()
    cal = calendar_from_name('USA')
    p1 = Period('1Mo')
    p2 = Period('2Mo')
    p3 = Period('3Mo')
    p6 = Period('6Mo')
    p12 = Period('12Mo')
    sched = Schedule(ts.reference_date, ts.reference_date+Period('5Yr'), Period('3Mo'), cal)
    days = [pydate_from_qldate(d) for d in sched]
    f3 = [ts.forward_rate(d, d+p3, Actual360(), 0).rate for d in sched]
    f6 = [ts.forward_rate(d, d+p6, Actual360(), 0).rate for d in sched]
    f2 = [ts.forward_rate(d, d+p2, Actual360(), 0).rate for d in sched]

    plt.plot(days, f2, days, f3, days, f6)