aboutsummaryrefslogtreecommitdiffstats
path: root/python/yieldcurve.py
blob: e956e216c1a9e04c01fca431b2c4582a8d2fc09a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from common import root
import os
import requests, zipfile
from io import BytesIO
import xml.etree.ElementTree as ET
import datetime
from quantlib.settings import Settings
from quantlib.time.api import (WeekendsOnly, Date, Period, Days, Schedule, Annual,
                               Semiannual, today, Actual360, Months, ModifiedFollowing,
                               Thirty360, Actual365Fixed, calendar_from_name)
from quantlib.currency.api import USDCurrency, EURCurrency
from quantlib.indexes.ibor_index import IborIndex
from quantlib.termstructures.yields.api import (
    PiecewiseYieldCurve, DepositRateHelper, SwapRateHelper)
from quantlib.time.date import pydate_from_qldate

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from quantlib.quotes import SimpleQuote

def getMarkitIRData(date = datetime.date.today() - datetime.timedelta(days = 1),
                    currency="USD"):
    basedir = os.path.join(root, "data", "Yield Curves")
    filename = "InterestRates_{0}_{1:%Y%m%d}".format(currency, date)
    if not os.path.exists(os.path.join(basedir, filename + '.xml')):
        r = requests.get('http://www.markit.com/news/{0}.zip'.format(filename))
        if "zip" in r.headers['content-type']:
            with zipfile.ZipFile(BytesIO(r.content)) as z:
                z.extractall(path = os.path.join(root, "data", "Yield Curves"))
        else:
            return getMarkitIRData(date-datetime.timedelta(days=1))

    tree = ET.parse(os.path.join(root, "data", "Yield Curves", filename + '.xml'))
    deposits = zip([e.text for e in tree.findall('./deposits/*/tenor')],
                   [float(e.text) for e in tree.findall('./deposits/*/parrate')])
    swaps = zip([e.text for e in tree.findall('./swaps/*/tenor')],
                [float(e.text) for e in tree.findall('./swaps/*/parrate')])
    effectiveasof = tree.find('./effectiveasof').text
    MarkitData = {'deposits': list(deposits),
                  'swaps': list(swaps),
                  'effectiveasof': pd.Timestamp(effectiveasof).date()}
    return MarkitData

def get_futures_data(date = datetime.date.today()):
    futures_file = os.path.join(root, "data", "Yield Curves",
                                "futures-{0:%Y-%m-%d}.csv".format(date))
    with open(futures_file) as fh:
        quotes = [float(line.split(",")[1]) for line in fh]
    return quotes

def rate_helpers(currency="USD", MarkitData=None):
    settings = Settings()
    if not MarkitData:
        MarkitData = getMarkitIRData(pydate_from_qldate(settings.evaluation_date-1), currency)
        if MarkitData['effectiveasof'] != pydate_from_qldate(settings.evaluation_date):
            raise RuntimeError("Yield curve effective date: {0} doesn't " \
                               "match the evaluation date: {1}".format(
                                   MarkitData['effectiveasof'],
                                   pydate_from_qldate(settings.evaluation_date)))
    calendar = WeekendsOnly()
    if currency == "USD":
        isda_ibor = IborIndex("IsdaIbor", Period(3, Months), 2, USDCurrency(), calendar,
                              ModifiedFollowing, False, Actual360())
        fix_freq = Semiannual
    elif currency == "EUR":
        isda_ibor = IborIndex("IsdaIbor", Period(6, Months), 2, EURCurrency(), calendar,
                              ModifiedFollowing, False, Actual360())
        fix_freq = Annual
    deps = [DepositRateHelper(q, Period(t), 2, calendar, ModifiedFollowing, False, Actual360())
            for t, q in MarkitData['deposits']]
    # this matches with bloomberg, but according to Markit, maturity should be unadjusted
    swaps = [SwapRateHelper.from_tenor(q, Period(t), calendar, fix_freq, ModifiedFollowing,
                                       Thirty360(), isda_ibor) for t, q in MarkitData['swaps']]
    return deps + swaps

def YC(currency="USD", helpers = None, MarkitData=None):
    settings = Settings()
    if helpers is None:
        helpers = rate_helpers(currency, MarkitData)
    curve = PiecewiseYieldCurve("discount", "loglinear", settings.evaluation_date,
                                helpers, Actual365Fixed())
    return curve

if __name__=="__main__":
    #evaluation_date = Date(29, 4, 2014)
    Settings.instance().evaluation_date = today()
    ts = YC()
    cal = calendar_from_name('USA')
    p1 = Period('1Mo')
    p2 = Period('2Mo')
    p3 = Period('3Mo')
    p6 = Period('6Mo')
    p12 = Period('12Mo')
    sched = Schedule(ts.reference_date, ts.reference_date+Period('5Yr'), Period('3Mo'), cal)
    days = [pydate_from_qldate(d) for d in sched]
    f3 = [ts.forward_rate(d, d+p3, Actual360(), 0).rate for d in sched]
    f6 = [ts.forward_rate(d, d+p6, Actual360(), 0).rate for d in sched]
    f2 = [ts.forward_rate(d, d+p2, Actual360(), 0).rate for d in sched]

    plt.plot(days, f2, days, f3, days, f6)