diff options
| author | Guillaume Horel <guillaume.horel@serenitascapital.com> | 2014-10-08 10:39:29 -0400 |
|---|---|---|
| committer | Guillaume Horel <guillaume.horel@serenitascapital.com> | 2014-10-08 10:39:29 -0400 |
| commit | f11771ed1191a9db78007aa3d7bca002bab0e0f6 (patch) | |
| tree | c8787a4b07dd06ff79ac489b1245adbdc4b11754 /R/distrib.R | |
| parent | 1e2aea18da610f7f225a744c77081f6ced9379fe (diff) | |
| download | lossdistrib-f11771ed1191a9db78007aa3d7bca002bab0e0f6.tar.gz | |
rename file since there are no tranche functions left
Diffstat (limited to 'R/distrib.R')
| -rw-r--r-- | R/distrib.R | 550 |
1 files changed, 550 insertions, 0 deletions
diff --git a/R/distrib.R b/R/distrib.R new file mode 100644 index 0000000..8b10394 --- /dev/null +++ b/R/distrib.R @@ -0,0 +1,550 @@ +## todo:
+## -investigate other ways to interpolate the random severities on the grid
+## I'm thinking that at eah severity that we add to the distribution, round it down
+## and keep track of the missing mass: namely if X_i=S_i w.p p_i, then add
+## X_i=lu*floor(S_i/lu) with probability p_i and propagate
+## X_{i+1}=S_{i+1}+(S_i-lu*floor(S_i/lu)) with the right probability
+## - investigate truncated distributions more (need to compute loss and recov distribution
+## separately, for the 0-10 equity tranche, we need the loss on the 0-0.1 support and
+## recovery with 0.1-1 support, so it's not clear that there is a big gain.
+## - do the correlation adjustments when computing the deltas since it seems to be
+## the market standard
+
+#' Gauss-Hermite quadrature weights
+#'
+#' \code{GHquad} computes the quadrature weights for integrating against a
+#' Gaussian distribution.
+#'
+#' if f is a function, then with(GHquad(100), crossprod(f(Z), w))
+#'
+#' @param n Integer, the number of nodes
+#' @return A list with two components:
+#' \item{Z}{the list of nodes}
+#' \item{w}{the corresponding weights}
+#'
+GHquad <- function(n){
+ n <- as.integer(n)
+ Z <- double(n)
+ w <- double(n)
+ result <- .C("GHquad", n, Z=Z, w=w)
+ result[[1]] <- NULL
+ return(result)
+}
+
+#' Loss distribution of a portfolio
+#'
+#' \code{lossdistrib} computes the probability distribution of a sum
+#' of independent Bernouilli variables with unequal probabilities.
+#'
+#' This uses the basic recursive algorithm of Andersen, Sidenius and Basu
+#' We compute the probability distribution of S = \sum_{i=1}^n X_i
+#' where X_i is Bernouilli(p_i)
+#' @param p Numeric vector, the vector of success probabilities
+#' @return A vector q such that q[k]=P(S=k)
+lossdistrib <- function(p){
+ ## basic recursive algorithm of Andersen, Sidenius and Basu
+ n <- length(p)
+ q <- rep(0, (n+1))
+ q[1] <- 1
+ for(i in 1:n){
+ q[-1] <- p[i]*q[-(n+1)]+(1-p[i])*q[-1]
+ q[1] <- (1-p[i])*q[1]
+ }
+ return(q)
+}
+
+#' Loss distribution of a portfolio
+#'
+#' \code{lossdistrib.fft} computes the probability distribution of a sum
+#' of independent Bernouilli variables with unequal probabilities.
+#'
+#' This uses the fft. Complexity is of order O(n m) + O(m\log{m})
+#' where m is the size of the grid and n, the number of probabilities.
+#' It is slower than the recursive algorithm in practice.
+#' We compute the probability distribution of S = \sum_{i=1}^n X_i
+#' where X_i is Bernouilli(p_i)
+#' @param p Numeric vector, the vector of success probabilities
+#' @return A vector such that q[k]=P(S=k)
+lossdistrib.fft <- function(p){
+ n <- length(p)
+ theta <- 2*pi*1i*(0:n)/(n+1)
+ Phi <- 1 - p + p%o%exp(theta)
+ v <- apply(Phi, 2, prod)
+ return(1/(n+1)*Re(fft(v)))
+}
+
+#' recursive algorithm with first order correction
+#'
+#' @param p Numeric, vector of default probabilities
+#' @param w Numeric, vector of weights
+#' @param S Numeric, vector of severities
+#' @param N Integer, number of ticks in the grid
+#' @param defaultflag Boolean, if True, we compute the default distribution
+#' (instead of the loss distribution).
+#' @return a Numeric vector of size \code{N} computing the loss (resp.
+#' default) distribution if \code{defaultflag} is FALSE (resp. TRUE).
+lossdistrib2 <- function(p, w, S, N, defaultflag=FALSE){
+ n <- length(p)
+ lu <- 1/(N-1)
+ q <- rep(0, N)
+ q[1] <- 1
+ for(i in 1:n){
+ if(defaultflag){
+ d <- w[i] /lu
+ }else{
+ d <- S[i] * w[i] / lu
+ }
+ d1 <- floor(d)
+ d2 <- ceiling(d)
+ p1 <- p[i]*(d2-d)
+ p2 <- p[i] - p1
+ q1 <- c(rep(0,d1), p1*q[1:(N-d1)])
+ q2 <- c(rep(0,d2), p2*q[1:(N-d2)])
+ q <- q1 + q2 + (1-p[i])*q
+ }
+ q[length(q)] <- q[length(q)]+1-sum(q)
+ return(q)
+}
+
+lossdistrib2.truncated <- function(p, w, S, N, cutoff=N){
+ ## recursive algorithm with first order correction
+ ## p vector of default probabilities
+ ## w vector of weigths
+ ## S vector of severities
+ ## N number of ticks in the grid (for best accuracy should
+ ## be a multiple of the number of issuers)
+ ## cutoff where to stop computing the exact probabilities
+ ## (useful for tranche computations)
+
+ ## this is actually slower than lossdistrib2. But in C this is
+ ## twice as fast.
+ ## for high severities, M can become bigger than N, and there is
+ ## some probability mass escaping.
+ n <- length(p)
+ lu <- 1/(N-1)
+ q <- rep(0, truncated)
+ q[1] <- 1
+ M <- 1
+ for(i in 1:n){
+ d <- S[i] * w[i] / lu
+ d1 <- floor(d)
+ d2 <- ceiling(d)
+ p1 <- p[i]*(d2-d)
+ p2 <- p[i] - p1
+ q1 <- p1*q[1:min(M, cutoff-d1)]
+ q2 <- p2*q[1:min(M, cutoff-d2)]
+ q[1:min(M, cutoff)] <- (1-p[i])*q[1:min(M, cutoff)]
+ q[(d1+1):min(M+d1, cutoff)] <- q[(d1+1):min(M+d1, cutoff)]+q1
+ q[(d2+1):min(M+d2, cutoff)] <- q[(d2+1):min(M+d2, cutoff)]+q2
+ M <- M+d2
+ }
+ return(q)
+}
+
+recovdist <- function(dp, pp, w, S, N){
+ ## computes the recovery distribution for a sum of independent variables
+ ## R=\sum_{i=1}^n w[i] X_i
+ ## where X_i = 0 w.p 1 - dp[i] - pp[i]
+ ## = 1 - S[i] w.p dp[i]
+ ## = 1 w.p pp[i]
+ ## each non zero value v is interpolated on the grid as
+ ## the pair of values floor(v/lu) and ceiling(v/lu) so that
+ ## X_i has four non zero values
+ n <- length(dp)
+ q <- rep(0, N)
+ q[1] <- 1
+ lu <- 1/(N-1)
+ for(i in 1:n){
+ d1 <- w[i]*(1-S[i])/lu
+ d1l <- floor(d1)
+ d1u <- ceiling(d1)
+ d2 <- w[i] / lu
+ d2l <- floor(d2)
+ d2u <- ceiling(d2)
+ dp1 <- dp[i] * (d1u-d1)
+ dp2 <- dp[i] - dp1
+ pp1 <- pp[i] * (d2u - d2)
+ pp2 <- pp[i] - pp1
+ q1 <- c(rep(0, d1l), dp1 * q[1:(N-d1l)])
+ q2 <- c(rep(0, d1u), dp2 * q[1:(N-d1u)])
+ q3 <- c(rep(0, d2l), pp1 * q[1:(N-d2l)])
+ q4 <- c(rep(0, d2u), pp2 *q[1:(N-d2u)])
+ q <- q1+q2+q3+q4+(1-dp[i]-pp[i])*q
+ }
+ return(q)
+}
+
+lossdist.joint <- function(p, w, S, N, defaultflag=FALSE){
+ ## recursive algorithm with first order correction
+ ## to compute the joint probability distribution of the loss and recovery
+ ## inputs:
+ ## p: vector of default probabilities
+ ## w: vector of issuer weights
+ ## S: vector of severities
+ ## N: number of tick sizes on the grid
+ ## defaultflag: if true computes the default distribution
+ ## output:
+ ## q: matrix of joint loss, recovery probability
+ ## colSums(q) is the recovery distribution marginal
+ ## rowSums(q) is the loss distribution marginal
+ n <- length(p)
+ lu <- 1/(N-1)
+ q <- matrix(0, N, N)
+ q[1,1] <- 1
+ for(k in 1:n){
+ if(defaultflag){
+ x <- w[k] / lu
+ }else{
+ x <- S[k] * w[k]/lu
+ }
+ y <- (1-S[k]) * w[k]/lu
+ i <- floor(x)
+ j <- floor(y)
+ weights <- c((i+1-x)*(j+1-y), (i+1-x)*(y-j), (x-i)*(y-j), (j+1-y)*(x-i))
+ psplit <- p[k] * weights
+ qtemp <- matrix(0, N, N)
+ qtemp[(i+1):N,(j+1):N] <- qtemp[(i+1):N,(j+1):N] + psplit[1] * q[1:(N-i),1:(N-j)]
+ qtemp[(i+1):N,(j+2):N] <- qtemp[(i+1):N,(j+2):N] + psplit[2] * q[1:(N-i), 1:(N-j-1)]
+ qtemp[(i+2):N,(j+2):N] <- qtemp[(i+2):N,(j+2):N] + psplit[3] * q[1:(N-i-1), 1:(N-j-1)]
+ qtemp[(i+2):N, (j+1):N] <- qtemp[(i+2):N, (j+1):N] + psplit[4] * q[1:(N-i-1), 1:(N-j)]
+ q <- qtemp + (1-p[k])*q
+ }
+ q[length(q)] <- q[length(q)]+1-sum(q)
+ return(q)
+}
+
+lossdist.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){
+ ## recursive algorithm with first order correction
+ ## to compute the joint probability distribition of the loss and recovery
+ ## inputs:
+ ## dp: vector of default probabilities
+ ## pp: vector of prepay probabilities
+ ## w: vector of issuer weights
+ ## S: vector of severities
+ ## N: number of tick sizes on the grid
+ ## defaultflag: if true computes the default
+ ## outputs
+ ## q: matrix of joint loss and recovery probability
+ ## colSums(q) is the recovery distribution marginal
+ ## rowSums(q) is the loss distribution marginal
+ n <- length(dp)
+ lu <- 1/(N-1)
+ q <- matrix(0, N, N)
+ q[1,1] <- 1
+ for(k in 1:n){
+ y1 <- (1-S[k]) * w[k]/lu
+ y2 <- w[k]/lu
+ j1 <- floor(y1)
+ j2 <- floor(y2)
+ if(defaultflag){
+ x <- y2
+ i <- j2
+ }else{
+ x <- y2-y1
+ i <- floor(x)
+ }
+
+ ## weights <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
+ weights1 <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
+ dpsplit <- dp[k] * weights1
+
+ if(defaultflag){
+ weights2 <- c((i+1-x)*(j2+1-y2), (i+1-x)*(y2-j2), (x-i)*(y2-j2), (j2+1-y2)*(x-i))
+ ppsplit <- pp[k] * weights2
+ }else{
+ ppsplit <- pp[k] * c(j2+1-y2, y2-j2)
+ }
+ qtemp <- matrix(0, N, N)
+ qtemp[(i+1):N,(j1+1):N] <- qtemp[(i+1):N,(j1+1):N] + dpsplit[1] * q[1:(N-i),1:(N-j1)]
+ qtemp[(i+1):N,(j1+2):N] <- qtemp[(i+1):N,(j1+2):N] + dpsplit[2] * q[1:(N-i), 1:(N-j1-1)]
+ qtemp[(i+2):N,(j1+2):N] <- qtemp[(i+2):N,(j1+2):N] + dpsplit[3] * q[1:(N-i-1), 1:(N-j1-1)]
+ qtemp[(i+2):N,(j1+1):N] <- qtemp[(i+2):N, (j1+1):N] + dpsplit[4] * q[1:(N-i-1), 1:(N-j1)]
+ if(defaultflag){
+ qtemp[(i+1):N,(j2+1):N] <- qtemp[(i+1):N,(j2+1):N] + ppsplit[1] * q[1:(N-i),1:(N-j2)]
+ qtemp[(i+1):N,(j2+2):N] <- qtemp[(i+1):N,(j2+2):N] + ppsplit[2] * q[1:(N-i), 1:(N-j2-1)]
+ qtemp[(i+2):N,(j2+2):N] <- qtemp[(i+2):N,(j2+2):N] + ppsplit[3] * q[1:(N-i-1), 1:(N-j2-1)]
+ qtemp[(i+2):N,(j2+1):N] <- qtemp[(i+2):N, (j2+1):N] + ppsplit[4] * q[1:(N-i-1), 1:(N-j2)]
+ }else{
+ qtemp[, (j2+1):N] <- qtemp[,(j2+1):N]+ppsplit[1]*q[,1:(N-j2)]
+ qtemp[, (j2+2):N] <- qtemp[,(j2+2):N]+ppsplit[2]*q[,1:(N-j2-1)]
+ }
+ q <- qtemp + (1-pp[k]-dp[k]) * q
+ }
+ q[length(q)] <- q[length(q)] + 1 - sum(q)
+ return(q)
+}
+
+lossdistC <- function(p, w, S, N, defaultflag=FALSE){
+ ## C version of lossdistrib2, roughly 50 times faster
+ .C("lossdistrib", as.double(p), as.integer(length(p)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q = double(N))$q
+}
+
+lossdistCblas <- function(p, w, S, N, defaultflag=FALSE){
+ ## C version of lossdistrib2, roughly 50 times faster
+ .C("lossdistrib_blas", as.double(p), as.integer(length(p)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q = double(N))$q
+}
+
+lossdistCZ <- function(p, w, S, N, defaultflag=FALSE, rho, Z){
+ #S is of size (length(p), length(Z))
+ .C("lossdistrib_Z", as.double(p), as.integer(length(p)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag),
+ as.double(rho), as.double(Z), as.integer(length(Z)),
+ q = matrix(0, N, length(Z)))$q
+}
+
+lossdistC.truncated <- function(p, w, S, N, T=N){
+ ## C version of lossdistrib2, roughly 50 times faster
+ .C("lossdistrib_truncated", as.double(p), as.integer(length(p)),
+ as.double(w), as.double(S), as.integer(N), as.integer(T), q = double(T))$q
+}
+
+recovdistC <- function(dp, pp, w, S, N){
+ ## C version of recovdist
+ .C("recovdist", as.double(dp), as.double(pp), as.integer(length(dp)),
+ as.double(w), as.double(S), as.integer(N), q = double(N))$q
+}
+
+lossdistC.joint <- function(p, w, S, N, defaultflag=FALSE){
+ ## C version of lossdistrib.joint, roughly 20 times faster
+ .C("lossdistrib_joint", as.double(p), as.integer(length(p)), as.double(w),
+ as.double(S), as.integer(N), as.logical(defaultflag), q = matrix(0, N, N))$q
+}
+
+lossdistC.jointblas <- function(p, w, S, N, defaultflag=FALSE){
+ ## C version of lossdistrib.joint, roughly 20 times faster
+ .C("lossdistrib_joint_blas", as.double(p), as.integer(length(p)), as.double(w),
+ as.double(S), as.integer(N), as.logical(defaultflag), q = matrix(0, N, N))$q
+}
+
+lossdistC.jointZ <- function(dp, w, S, N, defaultflag = FALSE, rho, Z, wZ){
+ ## N is the size of the grid
+ ## dp is of size n.credits
+ ## w is of size n.credits
+ ## S is of size n.credits by nZ
+ ## rho is a double
+ ## Z is a vector of length nZ
+ ## w is a vector if length wZ
+ r <- .C("lossdistrib_joint_Z", as.double(dp), as.integer(length(dp)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho),
+ as.double(Z), as.double(wZ), as.integer(length(Z)), q = matrix(0, N, N))$q
+}
+
+lossdistC.prepay.jointblas <- function(dp, pp, w, S, N, defaultflag=FALSE){
+ ## C version of lossdist.prepay.joint
+ r <- .C("lossdistrib_prepay_joint_blas", as.double(dp), as.double(pp), as.integer(length(dp)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q=matrix(0, N, N))$q
+ return(r)
+}
+
+lossdistC.prepay.jointZ <- function(dp, pp, w, S, N, defaultflag = FALSE, rho, Z, wZ){
+ ## N is the size of the grid
+ ## dp is of size n.credits
+ ## pp is of size n.credits
+ ## w is of size n.credits
+ ## S is of size n.credits by nZ
+ ## rho is a vector of doubles of size n.credits
+ ## Z is a vector of length nZ
+ ## w is a vector if length wZ
+
+ r <- .C("lossdistrib_prepay_joint_Z", as.double(dp), as.double(pp), as.integer(length(dp)),
+ as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho),
+ as.double(Z), as.double(wZ), as.integer(length(Z)), output = matrix(0,N,N))
+ return(r$output)
+}
+
+lossrecovdist <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
+ lossdistrib2 <- if(useC) lossdistC
+ recovdist <- if(useC) recovdistC
+ if(missing(prepayprob)){
+ L <- lossdistrib2(defaultprob, w, S, N, defaultflag)
+ R <- lossdistrib2(defaultprob, w, 1-S, N)
+ }else{
+ L <- lossdistrib2(defaultprob+defaultflag*prepayprob, w, S, N, defaultflag)
+ R <- recovdist(defaultprob, prepayprob, w, S, N)
+ }
+ return(list(L=L, R=R))
+}
+
+lossrecovdist.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
+ ## computes the loss and recovery distribution over time
+ L <- array(0, dim=c(N, ncol(defaultprob)))
+ R <- array(0, dim=c(N, ncol(defaultprob)))
+ if(missing(prepayprob)){
+ for(t in 1:ncol(defaultprob)){
+ temp <- lossrecovdist(defaultprob[,t], , w, S[,t], N, defaultflag, useC)
+ L[,t] <- temp$L
+ R[,t] <- temp$R
+ }
+ }else{
+ for(t in 1:ncol(defaultprob)){
+ temp <- lossrecovdist(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag, useC)
+ L[,t] <- temp$L
+ R[,t] <- temp$R
+ }
+ }
+ return(list(L=L, R=R))
+}
+
+lossrecovdist.joint.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
+ ## computes the joint loss and recovery distribution over time
+ Q <- array(0, dim=c(ncol(defaultprob), N, N))
+ lossdist.joint <- if(useC) lossdistC.jointblas
+ lossdist.prepay.joint <- if(useC) lossdistC.prepay.jointblas
+ if(missing(prepayprob)){
+ for(t in 1:ncol(defaultprob)){
+ Q[t,,] <- lossdist.joint(defaultprob[,t], w, S[,t], N, defaultflag)
+ }
+ }else{
+ for(t in 1:ncol(defaultprob)){
+ Q[t,,] <- lossdist.prepay.jointblas(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag)
+ }
+ }
+ return(Q)
+}
+
+dist.transform <- function(dist.joint){
+ ## compute the joint (D, R) distribution
+ ## from the (L, R) distribution using D = L+R
+ distDR <- array(0, dim=dim(dist.joint))
+ Ngrid <- dim(dist.joint)[2]
+ for(t in 1:dim(dist.joint)[1]){
+ for(i in 1:Ngrid){
+ for(j in 1:Ngrid){
+ index <- i+j
+ if(index <= Ngrid){
+ distDR[t,index,j] <- distDR[t,index,j] + dist.joint[t,i,j]
+ }else{
+ distDR[t,Ngrid,j] <- distDR[t,Ngrid,j] +
+ dist.joint[t,i,j]
+ }
+ }
+ }
+ distDR[t,,] <- distDR[t,,]/sum(distDR[t,,])
+ }
+ return( distDR )
+}
+
+shockprob <- function(p, rho, Z, log.p=F){
+ ## computes the shocked default probability as a function of the copula factor
+ ## function is vectorized provided the below caveats:
+ ## p and rho are vectors of same length n, Z is a scalar, returns vector of length n
+ ## p and rho are scalars, Z is a vector of length n, returns vector of length n
+ if(length(p)==1){
+ if(rho==1){
+ return(Z<=qnorm(p))
+ }else{
+ return(pnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho), log.p=log.p))
+ }
+ }else{
+ result <- double(length(p))
+ result[rho==1] <- Z<=qnorm(p[rho==1])
+ result[rho<1] <- pnorm((qnorm(p[rho<1])-sqrt(rho[rho<1])*Z)/sqrt(1-rho[rho<1]), log.p=log.p)
+ return( result )
+ }
+}
+
+shockseverity <- function(S, Stilde=1, Z, rho, p){
+ ## computes the severity as a function of the copula factor Z
+ result <- double(length(S))
+ result[p==0] <- 0
+ result[p!=0] <- Stilde * exp( shockprob(S[p!=0]/Stilde*p[p!=0], rho[p!=0], Z, TRUE) -
+ shockprob(p[p!=0], rho[p!=0], Z, TRUE))
+ return(result)
+}
+
+dshockprob <- function(p,rho,Z){
+ dnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho))*dqnorm(p)/sqrt(1-rho)
+}
+
+dqnorm <- function(x){
+ 1/dnorm(qnorm(x))
+}
+
+fit.prob <- function(Z, w, rho, p0){
+ ## if the weights are not perfectly gaussian, find the probability p such
+ ## E_w(shockprob(p, rho, Z)) = p0
+ require(distr)
+ if(p0==0){
+ return(0)
+ }
+ if(rho == 1){
+ distw <- DiscreteDistribution(Z, w)
+ return(pnorm(q(distw)(p0)))
+ }
+ eps <- 1e-12
+ dp <- (crossprod(shockprob(p0,rho,Z),w)-p0)/crossprod(dshockprob(p0,rho,Z),w)
+ p <- p0
+ while(abs(dp) > eps){
+ dp <- (crossprod(shockprob(p,rho,Z),w)-p0)/crossprod(dshockprob(p,rho,Z),w)
+ phi <- 1
+ while ((p-phi*dp)<0 || (p-phi*dp)>1){
+ phi <- 0.8*phi
+ }
+ p <- p - phi*dp
+ }
+ return(p)
+}
+
+fit.probC <- function(Z, w, rho, p0){
+ r <- .C("fitprob", as.double(Z), as.double(w), as.integer(length(Z)),
+ as.double(rho), as.double(p0), q = double(1))
+ return(r$q)
+}
+
+stochasticrecov <- function(R, Rtilde, Z, w, rho, porig, pmod){
+ ## if porig == 0 (probably matured asset) then return orginal recovery
+ ## it shouldn't matter anyway since we never default that asset
+ if(porig == 0){
+ return(rep(R, length(Z)))
+ }else{
+ ptilde <- fit.prob(Z, w, rho, (1-R)/(1-Rtilde) * porig)
+ return(abs(1-(1-Rtilde) * exp(shockprob(ptilde, rho, Z, TRUE) - shockprob(pmod, rho, Z, TRUE))))
+ }
+}
+
+stochasticrecovC <- function(R, Rtilde, Z, w, rho, porig, pmod){
+ r <- .C("stochasticrecov", as.double(R), as.double(Rtilde), as.double(Z),
+ as.double(w), as.integer(length(Z)), as.double(rho), as.double(porig),
+ as.double(pmod), q = double(length(Z)))
+ return(r$q)
+}
+
+BClossdist <- function(defaultprob, issuerweights, recov, rho, Z, w,
+ N=length(recov)+1, defaultflag=FALSE, n.int=500){
+ if(missing(Z)){
+ quadrature <- GHquad(n.int)
+ Z <- quadrature$Z
+ w <- quadrature$w
+ }
+ ## do not use if weights are not gaussian, results would be incorrect
+ ## since shockseverity is invalid in that case (need to use stochasticrecov)
+ LZ <- matrix(0, N, length(Z))
+ RZ <- matrix(0, N, length(Z))
+ L <- matrix(0, N, ncol(defaultprob))
+ R <- matrix(0, N, ncol(defaultprob))
+ for(t in 1:ncol(defaultprob)){
+ for(i in 1:length(Z)){
+ g.shocked <- shockprob(defaultprob[,t], rho, Z[i])
+ S.shocked <- shockseverity(1-recov, 1, Z[i], rho, defaultprob[,t])
+ temp <- lossrecovdist(g.shocked, , issuerweights, S.shocked, N)
+ LZ[,i] <- temp$L
+ RZ[,i] <- temp$R
+ }
+ L[,t] <- LZ%*%w
+ R[,t] <- RZ%*%w
+ }
+ list(L=L, R=R)
+}
+
+BClossdistC <- function(defaultprob, issuerweights, recov, rho, Z, w,
+ N=length(issuerweights)+1, defaultflag=FALSE){
+ L <- matrix(0, N, dim(defaultprob)[2])
+ R <- matrix(0, N, dim(defaultprob)[2])
+ rho <- rep(rho, length(issuerweights))
+ r <- .C("BCloss_recov_dist", defaultprob, dim(defaultprob)[1], dim(defaultprob)[2],
+ as.double(issuerweights), as.double(recov), as.double(Z), as.double(w),
+ as.integer(length(Z)), as.double(rho), as.integer(N), as.logical(defaultflag), L=L, R=R)
+ return(list(L=r$L,R=r$R))
+}
|
