diff options
| -rw-r--r-- | R/distrib.R | 1239 |
1 files changed, 629 insertions, 610 deletions
diff --git a/R/distrib.R b/R/distrib.R index edc5081..8eb8c42 100644 --- a/R/distrib.R +++ b/R/distrib.R @@ -1,610 +1,629 @@ -## todo:
-## -investigate other ways to interpolate the random severities on the grid
-## I'm thinking that at eah severity that we add to the distribution, round it down
-## and keep track of the missing mass: namely if X_i=S_i w.p p_i, then add
-## X_i=lu*floor(S_i/lu) with probability p_i and propagate
-## X_{i+1}=S_{i+1}+(S_i-lu*floor(S_i/lu)) with the right probability
-## - investigate truncated distributions more (need to compute loss and recov distribution
-## separately, for the 0-10 equity tranche, we need the loss on the 0-0.1 support and
-## recovery with 0.1-1 support, so it's not clear that there is a big gain.
-## - do the correlation adjustments when computing the deltas since it seems to be
-## the market standard
-
-#' Gauss-Hermite quadrature weights
-#'
-#' \code{GHquad} computes the quadrature weights for integrating against a
-#' Gaussian distribution.
-#'
-#' if f is a function, then \eqn{\sum_{i=1}^n f(Z_i)w_i \approx
-#' \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty f(x)e^{-\frac{x^2}{2}}\,dx}.
-#' @param n Integer, the number of nodes
-#' @return A list with two components:
-#' \item{Z}{the list of nodes}
-#' \item{w}{the corresponding weights}
-#'
-GHquad <- function(n){
- n <- as.integer(n)
- Z <- double(n)
- w <- double(n)
- result <- .C("GHquad", n, Z=Z, w=w)
- result[[1]] <- NULL
- return(result)
-}
-
-#' Loss distribution of a portfolio
-#'
-#' \code{lossdistrib} computes the probability distribution of a sum
-#' of independent Bernouilli variables with unequal probabilities.
-#'
-#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i}
-#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). This uses the simple recursive
-#' algorithm of Andersen, Sidenius and Basu
-#' @param p Numeric vector, the vector of success probabilities
-#' @return A vector q such that \eqn{q_k=\Pr(S=k)}
-lossdistrib <- function(p){
- ## basic recursive algorithm of Andersen, Sidenius and Basu
- n <- length(p)
- q <- rep(0, (n+1))
- q[1] <- 1
- for(i in 1:n){
- q[-1] <- p[i]*q[-(n+1)]+(1-p[i])*q[-1]
- q[1] <- (1-p[i])*q[1]
- }
- return(q)
-}
-
-#' Loss distribution of a portfolio
-#'
-#' \code{lossdistrib.fft} computes the probability distribution of a sum
-#' of independent Bernouilli variables with unequal probabilities.
-#'
-#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i}
-#' where \eqn{X_i} is Bernouilli(\eqn{p_i}).
-#' This uses the FFT, thus omplexity is of order \eqn{O(n m) + O(m\log(m))}
-#' where \eqn{m} is the size of the grid and \eqn{n}, the number of probabilities.
-#' It is slower than the recursive algorithm in practice.
-#' @param p Numeric vector, the vector of success probabilities
-#' @return A vector such that \eqn{q_k=\Pr(S=k)}
-lossdistrib.fft <- function(p){
- n <- length(p)
- theta <- 2*pi*1i*(0:n)/(n+1)
- Phi <- 1 - p + p%o%exp(theta)
- v <- apply(Phi, 2, prod)
- return(1/(n+1)*Re(fft(v)))
-}
-
-#' Loss distribution of a portfolio
-#'
-#' \code{lossdistrib2} computes the probability distribution of a sum
-#' of independent Bernouilli variables with unequal probabilities.
-#'
-#' We compute the probability distribution of \eqn{L = \sum_{i=1}^n w_i S_i X_i}
-#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). If \code{defaultflag} is TRUE, we
-#' compute the distribution of \eqn{D = \sum_{i=1}^n w_i X_i} instead.
-#' This a recursive algorithm with first order correction for discretization.
-#' @param p Numeric, vector of default probabilities
-#' @param w Numeric, vector of weights
-#' @param S Numeric, vector of severities
-#' @param N Integer, number of ticks in the grid
-#' @param defaultflag Boolean, if TRUE, we compute the default distribution
-#' (instead of the loss distribution).
-#' @return a Numeric vector of size \code{N} computing the loss (resp.
-#' default) distribution if \code{defaultflag} is FALSE (resp. TRUE).
-lossdistrib2 <- function(p, w, S, N, defaultflag=FALSE){
- n <- length(p)
- lu <- 1/(N-1)
- q <- rep(0, N)
- q[1] <- 1
- for(i in 1:n){
- if(defaultflag){
- d <- w[i] /lu
- }else{
- d <- S[i] * w[i] / lu
- }
- d1 <- floor(d)
- d2 <- ceiling(d)
- p1 <- p[i]*(d2-d)
- p2 <- p[i] - p1
- q1 <- c(rep(0,d1), p1*q[1:(N-d1)])
- q2 <- c(rep(0,d2), p2*q[1:(N-d2)])
- q <- q1 + q2 + (1-p[i])*q
- }
- q[length(q)] <- q[length(q)]+1-sum(q)
- return(q)
-}
-
-#' Loss distribution truncated version
-#'
-#' \code{lossdistrib2.truncated} computes the probability distribution of a sum
-#' of independent Bernouilli variables with unequal probabilities up
-#' to a cutoff N.
-#'
-#' This is actually slower than \code{lossdistrib2}, but in C this is
-#' twice as fast. For high severities, M can become bigger than the cutoff, and
-#' there is some probability mass escaping.
-#' @param p Numeric, vector of default probabilities
-#' @param w Numeric, vector of weights
-#' @param S Numeric, vector of severities
-#' @param N Integer, number of ticks in the grid
-#' @param cutoff Integer, where to stop computing the exact probabilities
-#' @return a Numeric vector of size \code{N} computing the loss distribution
-lossdistrib2.truncated <- function(p, w, S, N, cutoff=N){
- n <- length(p)
- lu <- 1/(N-1)
- q <- rep(0, cutoff)
- q[1] <- 1
- M <- 1
- for(i in 1:n){
- d <- S[i] * w[i] / lu
- d1 <- floor(d)
- d2 <- ceiling(d)
- p1 <- p[i]*(d2-d)
- p2 <- p[i] - p1
- q1 <- p1*q[1:min(M, cutoff-d1)]
- q2 <- p2*q[1:min(M, cutoff-d2)]
- q[1:min(M, cutoff)] <- (1-p[i])*q[1:min(M, cutoff)]
- q[(d1+1):min(M+d1, cutoff)] <- q[(d1+1):min(M+d1, cutoff)]+q1
- q[(d2+1):min(M+d2, cutoff)] <- q[(d2+1):min(M+d2, cutoff)]+q2
- M <- M+d2
- }
- return(q)
-}
-
-#' Recovery distribution of a portfolio
-#'
-#' \code{recovdist} computes the recovery distribution of portfolio
-#' described by a vector of default probabilities, and prepay probabilities.
-#' \eqn{R=\sum_{i=1}^n w_i X_i} where \eqn{X_i=0} w.p. \eqn{1-dp_i-pp_i},
-#' \eqn{X_i=1-S_i} with probability \eqn{dp_i}, and \eqn{X_i=1} w.p. \eqn{pp_i}
-#'
-#' It is a recursive algorithm with first-order correction. For a unit of loss
-#' \eqn{lu}, each non-zero value \eqn{v} is interpolated on the grid
-#' as the pair of values
-#' \eqn{\left\lfloor\frac{v}{lu}\right\rfloor} and
-#' \eqn{\left\lceil\frac{v}{lu}\right\rceil} so that \eqn{X_i} has
-#' four non zero values.
-#' @param dp Numeric, vector of default probabilities
-#' @param pp Numeric, vector of prepay probabilities
-#' @param w Numeric, vector of weights
-#' @param S Numeric, vector of severities
-#' @param N Integer, number of ticks in the grid
-#' @return a Numeric vector of size \code{N} computing the recovery distribution
-recovdist <- function(dp, pp, w, S, N){
- n <- length(dp)
- q <- rep(0, N)
- q[1] <- 1
- lu <- 1/(N-1)
- for(i in 1:n){
- d1 <- w[i]*(1-S[i])/lu
- d1l <- floor(d1)
- d1u <- ceiling(d1)
- d2 <- w[i] / lu
- d2l <- floor(d2)
- d2u <- ceiling(d2)
- dp1 <- dp[i] * (d1u-d1)
- dp2 <- dp[i] - dp1
- pp1 <- pp[i] * (d2u - d2)
- pp2 <- pp[i] - pp1
- q1 <- c(rep(0, d1l), dp1 * q[1:(N-d1l)])
- q2 <- c(rep(0, d1u), dp2 * q[1:(N-d1u)])
- q3 <- c(rep(0, d2l), pp1 * q[1:(N-d2l)])
- q4 <- c(rep(0, d2u), pp2 *q[1:(N-d2u)])
- q <- q1+q2+q3+q4+(1-dp[i]-pp[i])*q
- }
- return(q)
-}
-
-#' Joint loss-recovery distributionrecursive algorithm with first order correction to compute the joint
-#' probability distribution of the loss and recovery.
-#'
-#' For high severities, M can become bigger than N, and there is
-#' some probability mass escaping.
-#' @param p Numeric, vector of default probabilities
-#' @param w Numeric, vector of weights
-#' @param S Numeric, vector of severities
-#' @param N Integer, number of ticks in the grid
-#' @param defaultflab Logical, whether to return the loss or default distribution
-#' @return q Matrix of joint loss, recovery probability distribution
-#' colSums(q) is the recovery distribution marginal
-#' rowSums(q) is the loss distribution marginal
-lossdist.joint <- function(p, w, S, N, defaultflag=FALSE){
- n <- length(p)
- lu <- 1/(N-1)
- q <- matrix(0, N, N)
- q[1,1] <- 1
- for(k in 1:n){
- if(defaultflag){
- x <- w[k] / lu
- }else{
- x <- S[k] * w[k]/lu
- }
- y <- (1-S[k]) * w[k]/lu
- i <- floor(x)
- j <- floor(y)
- weights <- c((i+1-x)*(j+1-y), (i+1-x)*(y-j), (x-i)*(y-j), (j+1-y)*(x-i))
- psplit <- p[k] * weights
- qtemp <- matrix(0, N, N)
- qtemp[(i+1):N,(j+1):N] <- qtemp[(i+1):N,(j+1):N] + psplit[1] * q[1:(N-i),1:(N-j)]
- qtemp[(i+1):N,(j+2):N] <- qtemp[(i+1):N,(j+2):N] + psplit[2] * q[1:(N-i), 1:(N-j-1)]
- qtemp[(i+2):N,(j+2):N] <- qtemp[(i+2):N,(j+2):N] + psplit[3] * q[1:(N-i-1), 1:(N-j-1)]
- qtemp[(i+2):N, (j+1):N] <- qtemp[(i+2):N, (j+1):N] + psplit[4] * q[1:(N-i-1), 1:(N-j)]
- q <- qtemp + (1-p[k])*q
- }
- q[length(q)] <- q[length(q)]+1-sum(q)
- return(q)
-}
-
-lossdist.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){
- ## recursive algorithm with first order correction
- ## to compute the joint probability distribition of the loss and recovery
- ## inputs:
- ## dp: vector of default probabilities
- ## pp: vector of prepay probabilities
- ## w: vector of issuer weights
- ## S: vector of severities
- ## N: number of tick sizes on the grid
- ## defaultflag: if true computes the default
- ## outputs
- ## q: matrix of joint loss and recovery probability
- ## colSums(q) is the recovery distribution marginal
- ## rowSums(q) is the loss distribution marginal
- n <- length(dp)
- lu <- 1/(N-1)
- q <- matrix(0, N, N)
- q[1,1] <- 1
- for(k in 1:n){
- y1 <- (1-S[k]) * w[k]/lu
- y2 <- w[k]/lu
- j1 <- floor(y1)
- j2 <- floor(y2)
- if(defaultflag){
- x <- y2
- i <- j2
- }else{
- x <- y2-y1
- i <- floor(x)
- }
-
- ## weights <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
- weights1 <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
- dpsplit <- dp[k] * weights1
-
- if(defaultflag){
- weights2 <- c((i+1-x)*(j2+1-y2), (i+1-x)*(y2-j2), (x-i)*(y2-j2), (j2+1-y2)*(x-i))
- ppsplit <- pp[k] * weights2
- }else{
- ppsplit <- pp[k] * c(j2+1-y2, y2-j2)
- }
- qtemp <- matrix(0, N, N)
- qtemp[(i+1):N,(j1+1):N] <- qtemp[(i+1):N,(j1+1):N] + dpsplit[1] * q[1:(N-i),1:(N-j1)]
- qtemp[(i+1):N,(j1+2):N] <- qtemp[(i+1):N,(j1+2):N] + dpsplit[2] * q[1:(N-i), 1:(N-j1-1)]
- qtemp[(i+2):N,(j1+2):N] <- qtemp[(i+2):N,(j1+2):N] + dpsplit[3] * q[1:(N-i-1), 1:(N-j1-1)]
- qtemp[(i+2):N,(j1+1):N] <- qtemp[(i+2):N, (j1+1):N] + dpsplit[4] * q[1:(N-i-1), 1:(N-j1)]
- if(defaultflag){
- qtemp[(i+1):N,(j2+1):N] <- qtemp[(i+1):N,(j2+1):N] + ppsplit[1] * q[1:(N-i),1:(N-j2)]
- qtemp[(i+1):N,(j2+2):N] <- qtemp[(i+1):N,(j2+2):N] + ppsplit[2] * q[1:(N-i), 1:(N-j2-1)]
- qtemp[(i+2):N,(j2+2):N] <- qtemp[(i+2):N,(j2+2):N] + ppsplit[3] * q[1:(N-i-1), 1:(N-j2-1)]
- qtemp[(i+2):N,(j2+1):N] <- qtemp[(i+2):N, (j2+1):N] + ppsplit[4] * q[1:(N-i-1), 1:(N-j2)]
- }else{
- qtemp[, (j2+1):N] <- qtemp[,(j2+1):N]+ppsplit[1]*q[,1:(N-j2)]
- qtemp[, (j2+2):N] <- qtemp[,(j2+2):N]+ppsplit[2]*q[,1:(N-j2-1)]
- }
- q <- qtemp + (1-pp[k]-dp[k]) * q
- }
- q[length(q)] <- q[length(q)] + 1 - sum(q)
- return(q)
-}
-
-lossdistC <- function(p, w, S, N, defaultflag=FALSE){
- ## C version of lossdistrib2, roughly 50 times faster
- .C("lossdistrib", as.double(p), as.integer(length(p)),
- as.double(w), as.double(S), as.integer(N), as.integer(N), as.logical(defaultflag), q = double(N))$q
-}
-
-lossdistCZ <- function(p, w, S, N, defaultflag=FALSE, rho, Z){
- ##S is of size (length(p), length(Z))
- stopifnot(length(rho)==length(p),
- length(rho)==length(w),
- nrow(S)==length(p),
- ncol(S)==length(Z))
- .C("lossdistrib_Z", as.double(p), as.integer(length(p)),
- as.double(w), as.double(S), as.integer(N), as.logical(defaultflag),
- as.double(rho), as.double(Z), as.integer(length(Z)),
- q = matrix(0, N, length(Z)))$q
-}
-
-lossdistC.truncated <- function(p, w, S, N, T=N, defaultflag=FALSE){
- ## truncated version of lossdistrib
- ## q[i] is 0 for i>=T
- .C("lossdistrib_truncated", as.double(p), as.integer(length(p)),
- as.double(w), as.double(S), as.integer(N), as.integer(T), as.logical(defaultflag),
- q = double(N))$q
-}
-
-exp.trunc <- function(p, w, S, N, K){
- ## computes E[(K-L)^+]
- r <- 0
- .C("exp_trunc", as.double(p), as.integer(length(p)),
- as.double(w), as.double(S), as.integer(N), as.double(K), res = r)$res
-}
-
-rec.trunc <- function(p, w, S, N, K){
- ## computes E[(K-(1-R))^+] = E[(\tilde K- \bar R)]
- ## where \tilde K = K-sum_i w_i S_i and \bar R=\sum_i w_i R_i (1-X_i)
- Ktilde <- K-crossprod(w, S)
- if(Ktilde < 0){
- return( 0 )
- }else{
- return( exp.trunc(1-p, w, 1-S, N, Ktilde) )
- }
-}
-
-recovdistC <- function(dp, pp, w, S, N){
- ## C version of recovdist
- .C("recovdist", as.double(dp), as.double(pp), as.integer(length(dp)),
- as.double(w), as.double(S), as.integer(N), q = double(N))$q
-}
-
-lossdistC.joint <- function(p, w, S, N, defaultflag=FALSE){
- ## C version of lossdistrib.joint, roughly 20 times faster
- .C("lossdistrib_joint", as.double(p), as.integer(length(p)), as.double(w),
- as.double(S), as.integer(N), as.logical(defaultflag), q = matrix(0, N, N))$q
-}
-
-lossdistC.jointZ <- function(dp, w, S, N, defaultflag = FALSE, rho, Z, wZ){
- ## N is the size of the grid
- ## dp is of size n.credits
- ## w is of size n.credits
- ## S is of size n.credits by nZ
- ## rho is a double
- ## Z is a vector of length nZ
- ## w is a vector if length wZ
- r <- .C("lossdistrib_joint_Z", as.double(dp), as.integer(length(dp)),
- as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho),
- as.double(Z), as.double(wZ), as.integer(length(Z)), q = matrix(0, N, N))$q
-}
-
-lossdistC.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){
- ## C version of lossdist.prepay.joint
- r <- .C("lossdistrib_prepay_joint", as.double(dp), as.double(pp), as.integer(length(dp)),
- as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q=matrix(0, N, N))$q
- return(r)
-}
-
-lossdistC.prepay.jointZ <- function(dp, pp, w, S, N, defaultflag = FALSE, rho, Z, wZ){
- ## N is the size of the grid
- ## dp is of size n.credits
- ## pp is of size n.credits
- ## w is of size n.credits
- ## S is of size n.credits by nZ
- ## rho is a vector of doubles of size n.credits
- ## Z is a vector of length nZ
- ## w is a vector if length wZ
-
- r <- .C("lossdistrib_joint_Z", as.double(dp), as.double(pp), as.integer(length(dp)),
- as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho),
- as.double(Z), as.double(wZ), as.integer(length(Z)), output = matrix(0,N,N))
- return(r$output)
-}
-
-lossrecovdist <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
- lossdistrib2 <- if(useC) lossdistC
- recovdist <- if(useC) recovdistC
- if(missing(prepayprob)){
- L <- lossdistrib2(defaultprob, w, S, N, defaultflag)
- R <- lossdistrib2(defaultprob, w, 1-S, N)
- }else{
- L <- lossdistrib2(defaultprob+defaultflag*prepayprob, w, S, N, defaultflag)
- R <- recovdist(defaultprob, prepayprob, w, S, N)
- }
- return(list(L=L, R=R))
-}
-
-lossrecovdist.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
- ## computes the loss and recovery distribution over time
- L <- array(0, dim=c(N, ncol(defaultprob)))
- R <- array(0, dim=c(N, ncol(defaultprob)))
- if(missing(prepayprob)){
- for(t in 1:ncol(defaultprob)){
- temp <- lossrecovdist(defaultprob[,t], , w, S[,t], N, defaultflag, useC)
- L[,t] <- temp$L
- R[,t] <- temp$R
- }
- }else{
- for(t in 1:ncol(defaultprob)){
- temp <- lossrecovdist(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag, useC)
- L[,t] <- temp$L
- R[,t] <- temp$R
- }
- }
- return(list(L=L, R=R))
-}
-
-lossrecovdist.joint.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
- ## computes the joint loss and recovery distribution over time
- Q <- array(0, dim=c(ncol(defaultprob), N, N))
- lossdist.joint <- if(useC) lossdistC.jointblas
- lossdist.prepay.joint <- if(useC) lossdistC.prepay.jointblas
- if(missing(prepayprob)){
- for(t in 1:ncol(defaultprob)){
- Q[t,,] <- lossdist.joint(defaultprob[,t], w, S[,t], N, defaultflag)
- }
- }else{
- for(t in 1:ncol(defaultprob)){
- Q[t,,] <- lossdist.prepay.jointblas(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag)
- }
- }
- return(Q)
-}
-
-dist.transform <- function(dist.joint){
- ## compute the joint (D, R) distribution
- ## from the (L, R) distribution using D = L+R
- distDR <- array(0, dim=dim(dist.joint))
- Ngrid <- dim(dist.joint)[2]
- for(t in 1:dim(dist.joint)[1]){
- for(i in 1:Ngrid){
- for(j in 1:Ngrid){
- index <- i+j
- if(index <= Ngrid){
- distDR[t,index,j] <- distDR[t,index,j] + dist.joint[t,i,j]
- }else{
- distDR[t,Ngrid,j] <- distDR[t,Ngrid,j] +
- dist.joint[t,i,j]
- }
- }
- }
- distDR[t,,] <- distDR[t,,]/sum(distDR[t,,])
- }
- return( distDR )
-}
-
-shockprob <- function(p, rho, Z, log.p=F){
- ## computes the shocked default probability as a function of the copula factor
- ## function is vectorized provided the below caveats:
- ## p and rho are vectors of same length n, Z is a scalar, returns vector of length n
- ## p and rho are scalars, Z is a vector of length n, returns vector of length n
- if(length(p)==1){
- if(rho==1){
- return(Z<=qnorm(p))
- }else{
- return(pnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho), log.p=log.p))
- }
- }else{
- result <- double(length(p))
- result[rho==1] <- Z<=qnorm(p[rho==1])
- result[rho<1] <- pnorm((qnorm(p[rho<1])-sqrt(rho[rho<1])*Z)/sqrt(1-rho[rho<1]), log.p=log.p)
- return( result )
- }
-}
-
-shockseverity <- function(S, Stilde=1, Z, rho, p){
- ## computes the severity as a function of the copula factor Z
- result <- double(length(S))
- result[p==0] <- 0
- result[p!=0] <- Stilde * exp( shockprob(S[p!=0]/Stilde*p[p!=0], rho[p!=0], Z, TRUE) -
- shockprob(p[p!=0], rho[p!=0], Z, TRUE))
- return(result)
-}
-
-dshockprob <- function(p,rho,Z){
- dnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho))*dqnorm(p)/sqrt(1-rho)
-}
-
-dqnorm <- function(x){
- 1/dnorm(qnorm(x))
-}
-
-fit.prob <- function(Z, w, rho, p0){
- ## if the weights are not perfectly gaussian, find the probability p such
- ## E_w(shockprob(p, rho, Z)) = p0
- if(p0==0){
- return(0)
- }
- if(rho == 1){
- distw <- distr::DiscreteDistribution(Z, w)
- return(distr::pnorm(distr::q(distw)(p0)))
- }
- eps <- 1e-12
- dp <- (crossprod(shockprob(p0,rho,Z),w)-p0)/crossprod(dshockprob(p0,rho,Z),w)
- p <- p0
- while(abs(dp) > eps){
- dp <- (crossprod(shockprob(p,rho,Z),w)-p0)/crossprod(dshockprob(p,rho,Z),w)
- phi <- 1
- while ((p-phi*dp)<0 || (p-phi*dp)>1){
- phi <- 0.8*phi
- }
- p <- p - phi*dp
- }
- return(p)
-}
-
-fit.probC <- function(Z, w, rho, p0){
- stopifnot(length(Z)==length(w))
- r <- .C("fitprob", as.double(Z), as.double(w), as.integer(length(Z)),
- as.double(rho), as.double(p0), q = double(1))
- return(r$q)
-}
-
-stochasticrecov <- function(R, Rtilde, Z, w, rho, porig, pmod){
- ## if porig == 0 (probably matured asset) then return orginal recovery
- ## it shouldn't matter anyway since we never default that asset
- if(porig == 0){
- return(rep(R, length(Z)))
- }else{
- ptilde <- fit.prob(Z, w, rho, (1-R)/(1-Rtilde) * porig)
- return(abs(1-(1-Rtilde) * exp(shockprob(ptilde, rho, Z, TRUE) - shockprob(pmod, rho, Z, TRUE))))
- }
-}
-
-stochasticrecovC <- function(R, Rtilde, Z, w, rho, porig, pmod){
- r <- .C("stochasticrecov", as.double(R), as.double(Rtilde), as.double(Z),
- as.double(w), as.integer(length(Z)), as.double(rho), as.double(porig),
- as.double(pmod), q = double(length(Z)))
- return(r$q)
-}
-
-BClossdist <- function(defaultprob, issuerweights, recov, rho, Z, w,
- N=length(recov)+1, defaultflag=FALSE, n.int=500){
-
- if(missing(Z)){
- quadrature <- GHquad(n.int)
- Z <- quadrature$Z
- w <- quadrature$w
- }
- stopifnot(length(Z)==length(w),
- nrow(defaultprob) == length(issuerweights))
-
- ## do not use if weights are not gaussian, results would be incorrect
- ## since shockseverity is invalid in that case (need to use stochasticrecov)
- LZ <- matrix(0, N, length(Z))
- RZ <- matrix(0, N, length(Z))
- L <- matrix(0, N, ncol(defaultprob))
- R <- matrix(0, N, ncol(defaultprob))
- for(t in 1:ncol(defaultprob)){
- for(i in 1:length(Z)){
- g.shocked <- shockprob(defaultprob[,t], rho, Z[i])
- S.shocked <- shockseverity(1-recov, 1, Z[i], rho, defaultprob[,t])
- temp <- lossrecovdist(g.shocked, , issuerweights, S.shocked, N)
- LZ[,i] <- temp$L
- RZ[,i] <- temp$R
- }
- L[,t] <- LZ%*%w
- R[,t] <- RZ%*%w
- }
- list(L=L, R=R)
-}
-
-BClossdistC <- function(defaultprob, issuerweights, recov, rho, Z, w,
- N=length(issuerweights)+1, defaultflag=FALSE){
- if(is.null(dim(defaultprob))){
- dim(defaultprob) <- c(length(defaultprob),1)
- }
- stopifnot(length(Z)==length(w),
- nrow(defaultprob)==length(issuerweights),
- nrow(defaultprob)==length(recov))
- L <- matrix(0, N, ncol(defaultprob))
- R <- matrix(0, N, ncol(defaultprob))
- rho <- rep(rho, length(issuerweights))
- r <- .C("BCloss_recov_dist", defaultprob, as.integer(nrow(defaultprob)),
- as.integer(ncol(defaultprob)), as.double(issuerweights),
- as.double(recov), as.double(Z), as.double(w), as.integer(length(Z)),
- as.double(rho), as.integer(N), as.logical(defaultflag), L=L, R=R)
- return(list(L=r$L,R=r$R))
-}
-
-BCER <- function(defaultprob, issuerweights, recov, K, rho, Z, w,
- N=length(issuerweights)+1, defaultflag=FALSE){
- stopifnot(length(Z)==length(w),
- nrow(defaultprob)==length(issuerweights))
-
- rho <- rep(rho, length(issuerweights))
- ELt <- numeric(ncol(defaultprob))
- ERt <- numeric(ncol(defaultprob))
- r <- .C("BCloss_recov_trunc", defaultprob, as.integer(nrow(defaultprob)),
- as.integer(ncol(defaultprob)),
- as.double(issuerweights), as.double(recov), as.double(Z), as.double(w),
- as.integer(length(Z)), as.double(rho), as.integer(N), as.double(K),
- as.logical(defaultflag), ELt=ELt, ERt=ERt)
- return(list(ELt=r$ELt, ERt=r$ERt))
-}
+## todo: +## -investigate other ways to interpolate the random severities on the grid +## I'm thinking that at eah severity that we add to the distribution, round it down +## and keep track of the missing mass: namely if X_i=S_i w.p p_i, then add +## X_i=lu*floor(S_i/lu) with probability p_i and propagate +## X_{i+1}=S_{i+1}+(S_i-lu*floor(S_i/lu)) with the right probability +## - investigate truncated distributions more (need to compute loss and recov distribution +## separately, for the 0-10 equity tranche, we need the loss on the 0-0.1 support and +## recovery with 0.1-1 support, so it's not clear that there is a big gain. +## - do the correlation adjustments when computing the deltas since it seems to be +## the market standard + +#' Gauss-Hermite quadrature weights +#' +#' \code{GHquad} computes the quadrature weights for integrating against a +#' Gaussian distribution. +#' +#' if f is a function, then \eqn{\sum_{i=1}^n f(Z_i)w_i \approx +#' \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty f(x)e^{-\frac{x^2}{2}}\,dx}. +#' @param n Integer, the number of nodes +#' @return A list with two components: +#' \item{Z}{the list of nodes} +#' \item{w}{the corresponding weights} +#' +GHquad <- function(n){ + n <- as.integer(n) + Z <- double(n) + w <- double(n) + result <- .C("GHquad", n, Z=Z, w=w) + result[[1]] <- NULL + return(result) +} + +#' Loss distribution of a portfolio +#' +#' \code{lossdistrib} computes the probability distribution of a sum +#' of independent Bernouilli variables with unequal probabilities +#' (also called the Poisson-Binomial distribution). +#' +#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i} +#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). This uses the simple recursive +#' algorithm of Andersen, Sidenius and Basu +#' @param p Numeric vector, the vector of success probabilities +#' @return A vector q such that \eqn{q_k=\Pr(S=k)} +lossdistrib <- function(p){ + ## basic recursive algorithm of Andersen, Sidenius and Basu + n <- length(p) + q <- rep(0, (n+1)) + q[1] <- 1 + for(i in 1:n){ + q[-1] <- p[i]*q[-(n+1)]+(1-p[i])*q[-1] + q[1] <- (1-p[i])*q[1] + } + return(q) +} + +#'Convolution of two discrete probability distributions +#' +#' This is the probability of the sum of the two random variables +#' assuming they are independent. +#' @param dist1 Numeric vector of probabilities +#' @param dist2 Numeric vector of probabilities +#' @return Convolution of the two vectors +convolve <- function(dist1, dist2) { + n1 <- length(dist1) + n2 <- length(dist2) + dist1 <- c(dist1, rep(0, n2-1)) + dist2 <- c(dist2, rep(0, n1-1)) + Re(fft(fft(dist1) * fft(dist2), inverse=T))/length(dist1) +} + +#' Loss distribution of a portfolio +#' +#' \code{lossdistrib.fft} computes the probability distribution of a sum +#' of independent Bernouilli variables with unequal probabilities +#' (also called the Poisson-Binomial distribution). +#' +#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i} +#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). +#' This uses the FFT, thus complexity is of order \eqn{O(n \log(n))}, +#' compared to \eqn{O(n^2)} for the recurvise algotithm. +#' @param p Numeric vector, the vector of success probabilities +#' @return A vector such that \eqn{q_k=\Pr(S=k)} +lossdistrib.fft <- function(p) { + ## haven't tested when p is not a poiwer of 2. + if(length(p) == 1){ + c(1-p, p) + }else { + convolve(lossdistrib.fft(p[1:(length(p)/2)]), + lossdistrib.fft(p[-(1:(length(p)/2))])) + } +} + +#' Loss distribution of a portfolio +#' +#' \code{lossdistrib2} computes the probability distribution of a sum +#' of independent Bernouilli variables with unequal probabilities. +#' +#' We compute the probability distribution of \eqn{L = \sum_{i=1}^n w_i S_i X_i} +#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). If \code{defaultflag} is TRUE, we +#' compute the distribution of \eqn{D = \sum_{i=1}^n w_i X_i} instead. +#' This a recursive algorithm with first order correction for discretization. +#' Complexity is of ordier \eqn{O(nN)}, so linear for a given grid size. +#' @param p Numeric, vector of default probabilities +#' @param w Numeric, vector of weights +#' @param S Numeric, vector of severities +#' @param N Integer, number of ticks in the grid +#' @param defaultflag Boolean, if TRUE, we compute the default distribution +#' (instead of the loss distribution). +#' @return a Numeric vector of size \code{N} computing the loss (resp. +#' default) distribution if \code{defaultflag} is FALSE (resp. TRUE). +lossdistrib2 <- function(p, w, S, N, defaultflag=FALSE){ + n <- length(p) + lu <- 1/(N-1) + q <- rep(0, N) + q[1] <- 1 + for(i in 1:n){ + if(defaultflag){ + d <- w[i] /lu + }else{ + d <- S[i] * w[i] / lu + } + d1 <- floor(d) + d2 <- ceiling(d) + p1 <- p[i]*(d2-d) + p2 <- p[i] - p1 + q1 <- c(rep(0,d1), p1*q[1:(N-d1)]) + q2 <- c(rep(0,d2), p2*q[1:(N-d2)]) + q <- q1 + q2 + (1-p[i])*q + } + q[length(q)] <- q[length(q)]+1-sum(q) + return(q) +} + +#' Loss distribution truncated version +#' +#' \code{lossdistrib2.truncated} computes the probability distribution of a sum +#' of independent Bernouilli variables with unequal probabilities up +#' to a cutoff N. +#' +#' This is actually slower than \code{lossdistrib2}, but in C this is +#' twice as fast. For high severities, M can become bigger than the cutoff, and +#' there is some probability mass escaping. +#' @param p Numeric, vector of default probabilities +#' @param w Numeric, vector of weights +#' @param S Numeric, vector of severities +#' @param N Integer, number of ticks in the grid +#' @param cutoff Integer, where to stop computing the exact probabilities +#' @return a Numeric vector of size \code{N} computing the loss distribution +lossdistrib2.truncated <- function(p, w, S, N, cutoff=N){ + n <- length(p) + lu <- 1/(N-1) + q <- rep(0, cutoff) + q[1] <- 1 + M <- 1 + for(i in 1:n){ + d <- S[i] * w[i] / lu + d1 <- floor(d) + d2 <- ceiling(d) + p1 <- p[i]*(d2-d) + p2 <- p[i] - p1 + q1 <- p1*q[1:min(M, cutoff-d1)] + q2 <- p2*q[1:min(M, cutoff-d2)] + q[1:min(M, cutoff)] <- (1-p[i])*q[1:min(M, cutoff)] + q[(d1+1):min(M+d1, cutoff)] <- q[(d1+1):min(M+d1, cutoff)]+q1 + q[(d2+1):min(M+d2, cutoff)] <- q[(d2+1):min(M+d2, cutoff)]+q2 + M <- M+d2 + } + return(q) +} + +#' Recovery distribution of a portfolio +#' +#' \code{recovdist} computes the recovery distribution of portfolio +#' described by a vector of default probabilities, and prepay probabilities. +#' \eqn{R=\sum_{i=1}^n w_i X_i} where \eqn{X_i=0} w.p. \eqn{1-dp_i-pp_i}, +#' \eqn{X_i=1-S_i} with probability \eqn{dp_i}, and \eqn{X_i=1} w.p. \eqn{pp_i} +#' +#' It is a recursive algorithm with first-order correction. For a unit of loss +#' \eqn{lu}, each non-zero value \eqn{v} is interpolated on the grid +#' as the pair of values +#' \eqn{\left\lfloor\frac{v}{lu}\right\rfloor} and +#' \eqn{\left\lceil\frac{v}{lu}\right\rceil} so that \eqn{X_i} has +#' four non zero values. +#' @param dp Numeric, vector of default probabilities +#' @param pp Numeric, vector of prepay probabilities +#' @param w Numeric, vector of weights +#' @param S Numeric, vector of severities +#' @param N Integer, number of ticks in the grid +#' @return a Numeric vector of size \code{N} computing the recovery distribution +recovdist <- function(dp, pp, w, S, N){ + n <- length(dp) + q <- rep(0, N) + q[1] <- 1 + lu <- 1/(N-1) + for(i in 1:n){ + d1 <- w[i]*(1-S[i])/lu + d1l <- floor(d1) + d1u <- ceiling(d1) + d2 <- w[i] / lu + d2l <- floor(d2) + d2u <- ceiling(d2) + dp1 <- dp[i] * (d1u-d1) + dp2 <- dp[i] - dp1 + pp1 <- pp[i] * (d2u - d2) + pp2 <- pp[i] - pp1 + q1 <- c(rep(0, d1l), dp1 * q[1:(N-d1l)]) + q2 <- c(rep(0, d1u), dp2 * q[1:(N-d1u)]) + q3 <- c(rep(0, d2l), pp1 * q[1:(N-d2l)]) + q4 <- c(rep(0, d2u), pp2 *q[1:(N-d2u)]) + q <- q1+q2+q3+q4+(1-dp[i]-pp[i])*q + } + return(q) +} + +#' Joint loss-recovery distributionrecursive algorithm with first order correction to compute the joint +#' probability distribution of the loss and recovery. +#' +#' For high severities, M can become bigger than N, and there is +#' some probability mass escaping. +#' @param p Numeric, vector of default probabilities +#' @param w Numeric, vector of weights +#' @param S Numeric, vector of severities +#' @param N Integer, number of ticks in the grid +#' @param defaultflab Logical, whether to return the loss or default distribution +#' @return q Matrix of joint loss, recovery probability distribution +#' colSums(q) is the recovery distribution marginal +#' rowSums(q) is the loss distribution marginal +lossdist.joint <- function(p, w, S, N, defaultflag=FALSE){ + n <- length(p) + lu <- 1/(N-1) + q <- matrix(0, N, N) + q[1,1] <- 1 + for(k in 1:n){ + if(defaultflag){ + x <- w[k] / lu + }else{ + x <- S[k] * w[k]/lu + } + y <- (1-S[k]) * w[k]/lu + i <- floor(x) + j <- floor(y) + weights <- c((i+1-x)*(j+1-y), (i+1-x)*(y-j), (x-i)*(y-j), (j+1-y)*(x-i)) + psplit <- p[k] * weights + qtemp <- matrix(0, N, N) + qtemp[(i+1):N,(j+1):N] <- qtemp[(i+1):N,(j+1):N] + psplit[1] * q[1:(N-i),1:(N-j)] + qtemp[(i+1):N,(j+2):N] <- qtemp[(i+1):N,(j+2):N] + psplit[2] * q[1:(N-i), 1:(N-j-1)] + qtemp[(i+2):N,(j+2):N] <- qtemp[(i+2):N,(j+2):N] + psplit[3] * q[1:(N-i-1), 1:(N-j-1)] + qtemp[(i+2):N, (j+1):N] <- qtemp[(i+2):N, (j+1):N] + psplit[4] * q[1:(N-i-1), 1:(N-j)] + q <- qtemp + (1-p[k])*q + } + q[length(q)] <- q[length(q)]+1-sum(q) + return(q) +} + +lossdist.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){ + ## recursive algorithm with first order correction + ## to compute the joint probability distribition of the loss and recovery + ## inputs: + ## dp: vector of default probabilities + ## pp: vector of prepay probabilities + ## w: vector of issuer weights + ## S: vector of severities + ## N: number of tick sizes on the grid + ## defaultflag: if true computes the default + ## outputs + ## q: matrix of joint loss and recovery probability + ## colSums(q) is the recovery distribution marginal + ## rowSums(q) is the loss distribution marginal + n <- length(dp) + lu <- 1/(N-1) + q <- matrix(0, N, N) + q[1,1] <- 1 + for(k in 1:n){ + y1 <- (1-S[k]) * w[k]/lu + y2 <- w[k]/lu + j1 <- floor(y1) + j2 <- floor(y2) + if(defaultflag){ + x <- y2 + i <- j2 + }else{ + x <- y2-y1 + i <- floor(x) + } + + ## weights <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i)) + weights1 <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i)) + dpsplit <- dp[k] * weights1 + + if(defaultflag){ + weights2 <- c((i+1-x)*(j2+1-y2), (i+1-x)*(y2-j2), (x-i)*(y2-j2), (j2+1-y2)*(x-i)) + ppsplit <- pp[k] * weights2 + }else{ + ppsplit <- pp[k] * c(j2+1-y2, y2-j2) + } + qtemp <- matrix(0, N, N) + qtemp[(i+1):N,(j1+1):N] <- qtemp[(i+1):N,(j1+1):N] + dpsplit[1] * q[1:(N-i),1:(N-j1)] + qtemp[(i+1):N,(j1+2):N] <- qtemp[(i+1):N,(j1+2):N] + dpsplit[2] * q[1:(N-i), 1:(N-j1-1)] + qtemp[(i+2):N,(j1+2):N] <- qtemp[(i+2):N,(j1+2):N] + dpsplit[3] * q[1:(N-i-1), 1:(N-j1-1)] + qtemp[(i+2):N,(j1+1):N] <- qtemp[(i+2):N, (j1+1):N] + dpsplit[4] * q[1:(N-i-1), 1:(N-j1)] + if(defaultflag){ + qtemp[(i+1):N,(j2+1):N] <- qtemp[(i+1):N,(j2+1):N] + ppsplit[1] * q[1:(N-i),1:(N-j2)] + qtemp[(i+1):N,(j2+2):N] <- qtemp[(i+1):N,(j2+2):N] + ppsplit[2] * q[1:(N-i), 1:(N-j2-1)] + qtemp[(i+2):N,(j2+2):N] <- qtemp[(i+2):N,(j2+2):N] + ppsplit[3] * q[1:(N-i-1), 1:(N-j2-1)] + qtemp[(i+2):N,(j2+1):N] <- qtemp[(i+2):N, (j2+1):N] + ppsplit[4] * q[1:(N-i-1), 1:(N-j2)] + }else{ + qtemp[, (j2+1):N] <- qtemp[,(j2+1):N]+ppsplit[1]*q[,1:(N-j2)] + qtemp[, (j2+2):N] <- qtemp[,(j2+2):N]+ppsplit[2]*q[,1:(N-j2-1)] + } + q <- qtemp + (1-pp[k]-dp[k]) * q + } + q[length(q)] <- q[length(q)] + 1 - sum(q) + return(q) +} + +lossdistC <- function(p, w, S, N, defaultflag=FALSE){ + ## C version of lossdistrib2, roughly 50 times faster + .C("lossdistrib", as.double(p), as.integer(length(p)), + as.double(w), as.double(S), as.integer(N), as.integer(N), as.logical(defaultflag), q = double(N))$q +} + +lossdistCZ <- function(p, w, S, N, defaultflag=FALSE, rho, Z){ + ##S is of size (length(p), length(Z)) + stopifnot(length(rho)==length(p), + length(rho)==length(w), + nrow(S)==length(p), + ncol(S)==length(Z)) + .C("lossdistrib_Z", as.double(p), as.integer(length(p)), + as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), + as.double(rho), as.double(Z), as.integer(length(Z)), + q = matrix(0, N, length(Z)))$q +} + +lossdistC.truncated <- function(p, w, S, N, T=N, defaultflag=FALSE){ + ## truncated version of lossdistrib + ## q[i] is 0 for i>=T + .C("lossdistrib_truncated", as.double(p), as.integer(length(p)), + as.double(w), as.double(S), as.integer(N), as.integer(T), as.logical(defaultflag), + q = double(N))$q +} + +exp.trunc <- function(p, w, S, N, K){ + ## computes E[(K-L)^+] + r <- 0 + .C("exp_trunc", as.double(p), as.integer(length(p)), + as.double(w), as.double(S), as.integer(N), as.double(K), res = r)$res +} + +rec.trunc <- function(p, w, S, N, K){ + ## computes E[(K-(1-R))^+] = E[(\tilde K- \bar R)] + ## where \tilde K = K-sum_i w_i S_i and \bar R=\sum_i w_i R_i (1-X_i) + Ktilde <- K-crossprod(w, S) + if(Ktilde < 0){ + return( 0 ) + }else{ + return( exp.trunc(1-p, w, 1-S, N, Ktilde) ) + } +} + +recovdistC <- function(dp, pp, w, S, N){ + ## C version of recovdist + .C("recovdist", as.double(dp), as.double(pp), as.integer(length(dp)), + as.double(w), as.double(S), as.integer(N), q = double(N))$q +} + +lossdistC.joint <- function(p, w, S, N, defaultflag=FALSE){ + ## C version of lossdistrib.joint, roughly 20 times faster + .C("lossdistrib_joint", as.double(p), as.integer(length(p)), as.double(w), + as.double(S), as.integer(N), as.logical(defaultflag), q = matrix(0, N, N))$q +} + +lossdistC.jointZ <- function(dp, w, S, N, defaultflag = FALSE, rho, Z, wZ){ + ## N is the size of the grid + ## dp is of size n.credits + ## w is of size n.credits + ## S is of size n.credits by nZ + ## rho is a double + ## Z is a vector of length nZ + ## w is a vector if length wZ + r <- .C("lossdistrib_joint_Z", as.double(dp), as.integer(length(dp)), + as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho), + as.double(Z), as.double(wZ), as.integer(length(Z)), q = matrix(0, N, N))$q +} + +lossdistC.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){ + ## C version of lossdist.prepay.joint + r <- .C("lossdistrib_prepay_joint", as.double(dp), as.double(pp), as.integer(length(dp)), + as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q=matrix(0, N, N))$q + return(r) +} + +lossdistC.prepay.jointZ <- function(dp, pp, w, S, N, defaultflag = FALSE, rho, Z, wZ){ + ## N is the size of the grid + ## dp is of size n.credits + ## pp is of size n.credits + ## w is of size n.credits + ## S is of size n.credits by nZ + ## rho is a vector of doubles of size n.credits + ## Z is a vector of length nZ + ## w is a vector if length wZ + + r <- .C("lossdistrib_joint_Z", as.double(dp), as.double(pp), as.integer(length(dp)), + as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho), + as.double(Z), as.double(wZ), as.integer(length(Z)), output = matrix(0,N,N)) + return(r$output) +} + +lossrecovdist <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){ + lossdistrib2 <- if(useC) lossdistC + recovdist <- if(useC) recovdistC + if(missing(prepayprob)){ + L <- lossdistrib2(defaultprob, w, S, N, defaultflag) + R <- lossdistrib2(defaultprob, w, 1-S, N) + }else{ + L <- lossdistrib2(defaultprob+defaultflag*prepayprob, w, S, N, defaultflag) + R <- recovdist(defaultprob, prepayprob, w, S, N) + } + return(list(L=L, R=R)) +} + +lossrecovdist.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){ + ## computes the loss and recovery distribution over time + L <- array(0, dim=c(N, ncol(defaultprob))) + R <- array(0, dim=c(N, ncol(defaultprob))) + if(missing(prepayprob)){ + for(t in 1:ncol(defaultprob)){ + temp <- lossrecovdist(defaultprob[,t], , w, S[,t], N, defaultflag, useC) + L[,t] <- temp$L + R[,t] <- temp$R + } + }else{ + for(t in 1:ncol(defaultprob)){ + temp <- lossrecovdist(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag, useC) + L[,t] <- temp$L + R[,t] <- temp$R + } + } + return(list(L=L, R=R)) +} + +lossrecovdist.joint.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){ + ## computes the joint loss and recovery distribution over time + Q <- array(0, dim=c(ncol(defaultprob), N, N)) + lossdist.joint <- if(useC) lossdistC.jointblas + lossdist.prepay.joint <- if(useC) lossdistC.prepay.jointblas + if(missing(prepayprob)){ + for(t in 1:ncol(defaultprob)){ + Q[t,,] <- lossdist.joint(defaultprob[,t], w, S[,t], N, defaultflag) + } + }else{ + for(t in 1:ncol(defaultprob)){ + Q[t,,] <- lossdist.prepay.jointblas(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag) + } + } + return(Q) +} + +dist.transform <- function(dist.joint){ + ## compute the joint (D, R) distribution + ## from the (L, R) distribution using D = L+R + distDR <- array(0, dim=dim(dist.joint)) + Ngrid <- dim(dist.joint)[2] + for(t in 1:dim(dist.joint)[1]){ + for(i in 1:Ngrid){ + for(j in 1:Ngrid){ + index <- i+j + if(index <= Ngrid){ + distDR[t,index,j] <- distDR[t,index,j] + dist.joint[t,i,j] + }else{ + distDR[t,Ngrid,j] <- distDR[t,Ngrid,j] + + dist.joint[t,i,j] + } + } + } + distDR[t,,] <- distDR[t,,]/sum(distDR[t,,]) + } + return( distDR ) +} + +shockprob <- function(p, rho, Z, log.p=F){ + ## computes the shocked default probability as a function of the copula factor + ## function is vectorized provided the below caveats: + ## p and rho are vectors of same length n, Z is a scalar, returns vector of length n + ## p and rho are scalars, Z is a vector of length n, returns vector of length n + if(length(p)==1){ + if(rho==1){ + return(Z<=qnorm(p)) + }else{ + return(pnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho), log.p=log.p)) + } + }else{ + result <- double(length(p)) + result[rho==1] <- Z<=qnorm(p[rho==1]) + result[rho<1] <- pnorm((qnorm(p[rho<1])-sqrt(rho[rho<1])*Z)/sqrt(1-rho[rho<1]), log.p=log.p) + return( result ) + } +} + +shockseverity <- function(S, Stilde=1, Z, rho, p){ + ## computes the severity as a function of the copula factor Z + result <- double(length(S)) + result[p==0] <- 0 + result[p!=0] <- Stilde * exp( shockprob(S[p!=0]/Stilde*p[p!=0], rho[p!=0], Z, TRUE) - + shockprob(p[p!=0], rho[p!=0], Z, TRUE)) + return(result) +} + +dshockprob <- function(p,rho,Z){ + dnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho))*dqnorm(p)/sqrt(1-rho) +} + +dqnorm <- function(x){ + 1/dnorm(qnorm(x)) +} + +fit.prob <- function(Z, w, rho, p0){ + ## if the weights are not perfectly gaussian, find the probability p such + ## E_w(shockprob(p, rho, Z)) = p0 + if(p0==0){ + return(0) + } + if(rho == 1){ + distw <- distr::DiscreteDistribution(Z, w) + return(distr::pnorm(distr::q(distw)(p0))) + } + eps <- 1e-12 + dp <- (crossprod(shockprob(p0,rho,Z),w)-p0)/crossprod(dshockprob(p0,rho,Z),w) + p <- p0 + while(abs(dp) > eps){ + dp <- (crossprod(shockprob(p,rho,Z),w)-p0)/crossprod(dshockprob(p,rho,Z),w) + phi <- 1 + while ((p-phi*dp)<0 || (p-phi*dp)>1){ + phi <- 0.8*phi + } + p <- p - phi*dp + } + return(p) +} + +fit.probC <- function(Z, w, rho, p0){ + stopifnot(length(Z)==length(w)) + r <- .C("fitprob", as.double(Z), as.double(w), as.integer(length(Z)), + as.double(rho), as.double(p0), q = double(1)) + return(r$q) +} + +stochasticrecov <- function(R, Rtilde, Z, w, rho, porig, pmod){ + ## if porig == 0 (probably matured asset) then return orginal recovery + ## it shouldn't matter anyway since we never default that asset + if(porig == 0){ + return(rep(R, length(Z))) + }else{ + ptilde <- fit.prob(Z, w, rho, (1-R)/(1-Rtilde) * porig) + return(abs(1-(1-Rtilde) * exp(shockprob(ptilde, rho, Z, TRUE) - shockprob(pmod, rho, Z, TRUE)))) + } +} + +stochasticrecovC <- function(R, Rtilde, Z, w, rho, porig, pmod){ + r <- .C("stochasticrecov", as.double(R), as.double(Rtilde), as.double(Z), + as.double(w), as.integer(length(Z)), as.double(rho), as.double(porig), + as.double(pmod), q = double(length(Z))) + return(r$q) +} + +BClossdist <- function(defaultprob, issuerweights, recov, rho, Z, w, + N=length(recov)+1, defaultflag=FALSE, n.int=500){ + + if(missing(Z)){ + quadrature <- GHquad(n.int) + Z <- quadrature$Z + w <- quadrature$w + } + stopifnot(length(Z)==length(w), + nrow(defaultprob) == length(issuerweights)) + + ## do not use if weights are not gaussian, results would be incorrect + ## since shockseverity is invalid in that case (need to use stochasticrecov) + LZ <- matrix(0, N, length(Z)) + RZ <- matrix(0, N, length(Z)) + L <- matrix(0, N, ncol(defaultprob)) + R <- matrix(0, N, ncol(defaultprob)) + for(t in 1:ncol(defaultprob)){ + for(i in 1:length(Z)){ + g.shocked <- shockprob(defaultprob[,t], rho, Z[i]) + S.shocked <- shockseverity(1-recov, 1, Z[i], rho, defaultprob[,t]) + temp <- lossrecovdist(g.shocked, , issuerweights, S.shocked, N) + LZ[,i] <- temp$L + RZ[,i] <- temp$R + } + L[,t] <- LZ%*%w + R[,t] <- RZ%*%w + } + list(L=L, R=R) +} + +BClossdistC <- function(defaultprob, issuerweights, recov, rho, Z, w, + N=length(issuerweights)+1, defaultflag=FALSE){ + if(is.null(dim(defaultprob))){ + dim(defaultprob) <- c(length(defaultprob),1) + } + stopifnot(length(Z)==length(w), + nrow(defaultprob)==length(issuerweights), + nrow(defaultprob)==length(recov)) + L <- matrix(0, N, ncol(defaultprob)) + R <- matrix(0, N, ncol(defaultprob)) + rho <- rep(rho, length(issuerweights)) + r <- .C("BCloss_recov_dist", defaultprob, as.integer(nrow(defaultprob)), + as.integer(ncol(defaultprob)), as.double(issuerweights), + as.double(recov), as.double(Z), as.double(w), as.integer(length(Z)), + as.double(rho), as.integer(N), as.logical(defaultflag), L=L, R=R) + return(list(L=r$L,R=r$R)) +} + +BCER <- function(defaultprob, issuerweights, recov, K, rho, Z, w, + N=length(issuerweights)+1, defaultflag=FALSE){ + stopifnot(length(Z)==length(w), + nrow(defaultprob)==length(issuerweights)) + + rho <- rep(rho, length(issuerweights)) + ELt <- numeric(ncol(defaultprob)) + ERt <- numeric(ncol(defaultprob)) + r <- .C("BCloss_recov_trunc", defaultprob, as.integer(nrow(defaultprob)), + as.integer(ncol(defaultprob)), + as.double(issuerweights), as.double(recov), as.double(Z), as.double(w), + as.integer(length(Z)), as.double(rho), as.integer(N), as.double(K), + as.logical(defaultflag), ELt=ELt, ERt=ERt) + return(list(ELt=r$ELt, ERt=r$ERt)) +} |
