1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
## todo:
## -investigate other ways to interpolate the random severities on the grid
## I'm thinking that at eah severity that we add to the distribution, round it down
## and keep track of the missing mass: namely if X_i=S_i w.p p_i, then add
## X_i=lu*floor(S_i/lu) with probability p_i and propagate
## X_{i+1}=S_{i+1}+(S_i-lu*floor(S_i/lu)) with the right probability
## - investigate truncated distributions more (need to compute loss and recov distribution
## separately, for the 0-10 equity tranche, we need the loss on the 0-0.1 support and
## recovery with 0.1-1 support, so it's not clear that there is a big gain.
## - do the correlation adjustments when computing the deltas since it seems to be
## the market standard
#' Gauss-Hermite quadrature weights
#'
#' \code{GHquad} computes the quadrature weights for integrating against a
#' Gaussian distribution.
#'
#' if f is a function, then \eqn{\sum_{i=1}^n f(Z_i)w_i \approx
#' \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty f(x)e^{-\frac{x^2}{2}}\,dx}.
#' @param n Integer, the number of nodes
#' @return A list with two components:
#' \item{Z}{the list of nodes}
#' \item{w}{the corresponding weights}
#'
GHquad <- function(n){
n <- as.integer(n)
Z <- double(n)
w <- double(n)
result <- .C("GHquad", n, Z=Z, w=w)
result[[1]] <- NULL
return(result)
}
#' Loss distribution of a portfolio
#'
#' \code{lossdistrib} computes the probability distribution of a sum
#' of independent Bernouilli variables with unequal probabilities
#' (also called the Poisson-Binomial distribution).
#'
#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i}
#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). This uses the simple recursive
#' algorithm of Andersen, Sidenius and Basu
#' @param p Numeric vector, the vector of success probabilities
#' @return A vector q such that \eqn{q_k=\Pr(S=k)}
lossdistrib <- function(p){
## basic recursive algorithm of Andersen, Sidenius and Basu
n <- length(p)
q <- rep(0, (n+1))
q[1] <- 1
for(i in 1:n){
q[-1] <- p[i]*q[-(n+1)]+(1-p[i])*q[-1]
q[1] <- (1-p[i])*q[1]
}
return(q)
}
#'Convolution of two discrete probability distributions
#'
#' This is the probability of the sum of the two random variables
#' assuming they are independent.
#' @param dist1 Numeric vector of probabilities
#' @param dist2 Numeric vector of probabilities
#' @return Convolution of the two vectors
convolve <- function(dist1, dist2) {
n1 <- length(dist1)
n2 <- length(dist2)
dist1 <- c(dist1, rep(0, n2-1))
dist2 <- c(dist2, rep(0, n1-1))
Re(fft(fft(dist1) * fft(dist2), inverse=T))/length(dist1)
}
#' Loss distribution of a portfolio
#'
#' \code{lossdistrib.fft} computes the probability distribution of a sum
#' of independent Bernouilli variables with unequal probabilities
#' (also called the Poisson-Binomial distribution).
#'
#' We compute the probability distribution of \eqn{S = \sum_{i=1}^n X_i}
#' where \eqn{X_i} is Bernouilli(\eqn{p_i}).
#' This uses the FFT, thus complexity is of order \eqn{O(n \log(n))},
#' compared to \eqn{O(n^2)} for the recursive algorithm.
#' @param p Numeric vector, the vector of success probabilities
#' @return A vector such that \eqn{q_k=\Pr(S=k)}
lossdistrib.fft <- function(p) {
## haven't tested when p is not a power of 2.
if(length(p) == 1){
c(1-p, p)
}else {
convolve(lossdistrib.fft(p[1:(length(p)/2)]),
lossdistrib.fft(p[-(1:(length(p)/2))]))
}
}
#' Loss distribution of a portfolio
#'
#' \code{lossdistrib2} computes the probability distribution of a sum
#' of independent Bernouilli variables with unequal probabilities.
#'
#' We compute the probability distribution of \eqn{L = \sum_{i=1}^n w_i S_i X_i}
#' where \eqn{X_i} is Bernouilli(\eqn{p_i}). If \code{defaultflag} is TRUE, we
#' compute the distribution of \eqn{D = \sum_{i=1}^n w_i X_i} instead.
#' This a recursive algorithm with first order correction for discretization.
#' Complexity is of ordier \eqn{O(nN)}, so linear for a given grid size.
#' @param p Numeric, vector of default probabilities
#' @param w Numeric, vector of weights
#' @param S Numeric, vector of severities
#' @param N Integer, number of ticks in the grid
#' @param defaultflag Boolean, if TRUE, we compute the default distribution
#' (instead of the loss distribution).
#' @return a Numeric vector of size \code{N} computing the loss (resp.
#' default) distribution if \code{defaultflag} is FALSE (resp. TRUE).
lossdistrib2 <- function(p, w, S, N, defaultflag=FALSE){
n <- length(p)
lu <- 1/(N-1)
q <- rep(0, N)
q[1] <- 1
for(i in 1:n){
if(defaultflag){
d <- w[i] /lu
}else{
d <- S[i] * w[i] / lu
}
d1 <- floor(d)
d2 <- ceiling(d)
p1 <- p[i]*(d2-d)
p2 <- p[i] - p1
q1 <- c(rep(0,d1), p1*q[1:(N-d1)])
q2 <- c(rep(0,d2), p2*q[1:(N-d2)])
q <- q1 + q2 + (1-p[i])*q
}
q[length(q)] <- q[length(q)]+1-sum(q)
return(q)
}
#' Loss distribution truncated version
#'
#' \code{lossdistrib2.truncated} computes the probability distribution of a sum
#' of independent Bernouilli variables with unequal probabilities up
#' to a cutoff N.
#'
#' This is actually slower than \code{lossdistrib2}, but in C this is
#' twice as fast. For high severities, M can become bigger than the cutoff, and
#' there is some probability mass escaping.
#' @param p Numeric, vector of default probabilities
#' @param w Numeric, vector of weights
#' @param S Numeric, vector of severities
#' @param N Integer, number of ticks in the grid
#' @param cutoff Integer, where to stop computing the exact probabilities
#' @return a Numeric vector of size \code{N} computing the loss distribution
lossdistrib2.truncated <- function(p, w, S, N, cutoff=N){
n <- length(p)
lu <- 1/(N-1)
q <- rep(0, cutoff)
q[1] <- 1
M <- 1
for(i in 1:n){
d <- S[i] * w[i] / lu
d1 <- floor(d)
d2 <- ceiling(d)
p1 <- p[i]*(d2-d)
p2 <- p[i] - p1
q1 <- p1*q[1:min(M, cutoff-d1)]
q2 <- p2*q[1:min(M, cutoff-d2)]
q[1:min(M, cutoff)] <- (1-p[i])*q[1:min(M, cutoff)]
q[(d1+1):min(M+d1, cutoff)] <- q[(d1+1):min(M+d1, cutoff)]+q1
q[(d2+1):min(M+d2, cutoff)] <- q[(d2+1):min(M+d2, cutoff)]+q2
M <- M+d2
}
return(q)
}
#' Recovery distribution of a portfolio
#'
#' \code{recovdist} computes the recovery distribution of portfolio
#' described by a vector of default probabilities, and prepay probabilities.
#' \eqn{R=\sum_{i=1}^n w_i X_i} where \eqn{X_i=0} w.p. \eqn{1-dp_i-pp_i},
#' \eqn{X_i=1-S_i} with probability \eqn{dp_i}, and \eqn{X_i=1} w.p. \eqn{pp_i}
#'
#' It is a recursive algorithm with first-order correction. For a unit of loss
#' \eqn{lu}, each non-zero value \eqn{v} is interpolated on the grid
#' as the pair of values
#' \eqn{\left\lfloor\frac{v}{lu}\right\rfloor} and
#' \eqn{\left\lceil\frac{v}{lu}\right\rceil} so that \eqn{X_i} has
#' four non zero values.
#' @param dp Numeric, vector of default probabilities
#' @param pp Numeric, vector of prepay probabilities
#' @param w Numeric, vector of weights
#' @param S Numeric, vector of severities
#' @param N Integer, number of ticks in the grid
#' @return a Numeric vector of size \code{N} computing the recovery distribution
recovdist <- function(dp, pp, w, S, N){
n <- length(dp)
q <- rep(0, N)
q[1] <- 1
lu <- 1/(N-1)
for(i in 1:n){
d1 <- w[i]*(1-S[i])/lu
d1l <- floor(d1)
d1u <- ceiling(d1)
d2 <- w[i] / lu
d2l <- floor(d2)
d2u <- ceiling(d2)
dp1 <- dp[i] * (d1u-d1)
dp2 <- dp[i] - dp1
pp1 <- pp[i] * (d2u - d2)
pp2 <- pp[i] - pp1
q1 <- c(rep(0, d1l), dp1 * q[1:(N-d1l)])
q2 <- c(rep(0, d1u), dp2 * q[1:(N-d1u)])
q3 <- c(rep(0, d2l), pp1 * q[1:(N-d2l)])
q4 <- c(rep(0, d2u), pp2 *q[1:(N-d2u)])
q <- q1+q2+q3+q4+(1-dp[i]-pp[i])*q
}
return(q)
}
#' Joint loss-recovery distributionrecursive algorithm with first order correction to compute the joint
#' probability distribution of the loss and recovery.
#'
#' For high severities, M can become bigger than N, and there is
#' some probability mass escaping.
#' @param p Numeric, vector of default probabilities
#' @param w Numeric, vector of weights
#' @param S Numeric, vector of severities
#' @param N Integer, number of ticks in the grid
#' @param defaultflag Logical, whether to return the loss or default distribution
#' @return q Matrix of joint loss, recovery probability distribution
#' colSums(q) is the recovery distribution marginal
#' rowSums(q) is the loss distribution marginal
lossdist.joint <- function(p, w, S, N, defaultflag=FALSE){
n <- length(p)
lu <- 1/(N-1)
q <- matrix(0, N, N)
q[1,1] <- 1
for(k in 1:n){
if(defaultflag){
x <- w[k] / lu
}else{
x <- S[k] * w[k]/lu
}
y <- (1-S[k]) * w[k]/lu
i <- floor(x)
j <- floor(y)
weights <- c((i+1-x)*(j+1-y), (i+1-x)*(y-j), (x-i)*(y-j), (j+1-y)*(x-i))
psplit <- p[k] * weights
qtemp <- matrix(0, N, N)
qtemp[(i+1):N,(j+1):N] <- qtemp[(i+1):N,(j+1):N] + psplit[1] * q[1:(N-i),1:(N-j)]
qtemp[(i+1):N,(j+2):N] <- qtemp[(i+1):N,(j+2):N] + psplit[2] * q[1:(N-i), 1:(N-j-1)]
qtemp[(i+2):N,(j+2):N] <- qtemp[(i+2):N,(j+2):N] + psplit[3] * q[1:(N-i-1), 1:(N-j-1)]
qtemp[(i+2):N, (j+1):N] <- qtemp[(i+2):N, (j+1):N] + psplit[4] * q[1:(N-i-1), 1:(N-j)]
q <- qtemp + (1-p[k])*q
}
q[length(q)] <- q[length(q)]+1-sum(q)
return(q)
}
lossdist.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){
## recursive algorithm with first order correction
## to compute the joint probability distribition of the loss and recovery
## inputs:
## dp: vector of default probabilities
## pp: vector of prepay probabilities
## w: vector of issuer weights
## S: vector of severities
## N: number of tick sizes on the grid
## defaultflag: if true computes the default
## outputs
## q: matrix of joint loss and recovery probability
## colSums(q) is the recovery distribution marginal
## rowSums(q) is the loss distribution marginal
n <- length(dp)
lu <- 1/(N-1)
q <- matrix(0, N, N)
q[1,1] <- 1
for(k in 1:n){
y1 <- (1-S[k]) * w[k]/lu
y2 <- w[k]/lu
j1 <- floor(y1)
j2 <- floor(y2)
if(defaultflag){
x <- y2
i <- j2
}else{
x <- y2-y1
i <- floor(x)
}
## weights <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
weights1 <- c((i+1-x)*(j1+1-y1), (i+1-x)*(y1-j1), (x-i)*(y1-j1), (j1+1-y1)*(x-i))
dpsplit <- dp[k] * weights1
if(defaultflag){
weights2 <- c((i+1-x)*(j2+1-y2), (i+1-x)*(y2-j2), (x-i)*(y2-j2), (j2+1-y2)*(x-i))
ppsplit <- pp[k] * weights2
}else{
ppsplit <- pp[k] * c(j2+1-y2, y2-j2)
}
qtemp <- matrix(0, N, N)
qtemp[(i+1):N,(j1+1):N] <- qtemp[(i+1):N,(j1+1):N] + dpsplit[1] * q[1:(N-i),1:(N-j1)]
qtemp[(i+1):N,(j1+2):N] <- qtemp[(i+1):N,(j1+2):N] + dpsplit[2] * q[1:(N-i), 1:(N-j1-1)]
qtemp[(i+2):N,(j1+2):N] <- qtemp[(i+2):N,(j1+2):N] + dpsplit[3] * q[1:(N-i-1), 1:(N-j1-1)]
qtemp[(i+2):N,(j1+1):N] <- qtemp[(i+2):N, (j1+1):N] + dpsplit[4] * q[1:(N-i-1), 1:(N-j1)]
if(defaultflag){
qtemp[(i+1):N,(j2+1):N] <- qtemp[(i+1):N,(j2+1):N] + ppsplit[1] * q[1:(N-i),1:(N-j2)]
qtemp[(i+1):N,(j2+2):N] <- qtemp[(i+1):N,(j2+2):N] + ppsplit[2] * q[1:(N-i), 1:(N-j2-1)]
qtemp[(i+2):N,(j2+2):N] <- qtemp[(i+2):N,(j2+2):N] + ppsplit[3] * q[1:(N-i-1), 1:(N-j2-1)]
qtemp[(i+2):N,(j2+1):N] <- qtemp[(i+2):N, (j2+1):N] + ppsplit[4] * q[1:(N-i-1), 1:(N-j2)]
}else{
qtemp[, (j2+1):N] <- qtemp[,(j2+1):N]+ppsplit[1]*q[,1:(N-j2)]
qtemp[, (j2+2):N] <- qtemp[,(j2+2):N]+ppsplit[2]*q[,1:(N-j2-1)]
}
q <- qtemp + (1-pp[k]-dp[k]) * q
}
q[length(q)] <- q[length(q)] + 1 - sum(q)
return(q)
}
lossdistC <- function(p, w, S, N, defaultflag=FALSE){
## C version of lossdistrib2, roughly 50 times faster
.C("lossdistrib", as.double(p), as.integer(length(p)),
as.double(w), as.double(S), as.integer(N), as.integer(N), as.logical(defaultflag), q = double(N))$q
}
lossdistCZ <- function(p, w, S, N, defaultflag=FALSE, rho, Z){
##S is of size (length(p), length(Z))
stopifnot(length(rho)==length(p),
length(rho)==length(w),
nrow(S)==length(p),
ncol(S)==length(Z))
.C("lossdistrib_Z", as.double(p), as.integer(length(p)),
as.double(w), as.double(S), as.integer(N), as.logical(defaultflag),
as.double(rho), as.double(Z), as.integer(length(Z)),
q = matrix(0, N, length(Z)))$q
}
lossdistC.truncated <- function(p, w, S, N, T=N, defaultflag=FALSE){
## truncated version of lossdistrib
## q[i] is 0 for i>=T
.C("lossdistrib_truncated", as.double(p), as.integer(length(p)),
as.double(w), as.double(S), as.integer(N), as.integer(T), as.logical(defaultflag),
q = double(N))$q
}
exp.trunc <- function(p, w, S, N, K){
## computes E[(K-L)^+]
r <- 0
.C("exp_trunc", as.double(p), as.integer(length(p)),
as.double(w), as.double(S), as.integer(N), as.double(K), res = r)$res
}
rec.trunc <- function(p, w, S, N, K){
## computes E[(K-(1-R))^+] = E[(\tilde K- \bar R)]
## where \tilde K = K-sum_i w_i S_i and \bar R=\sum_i w_i R_i (1-X_i)
Ktilde <- K-crossprod(w, S)
if(Ktilde < 0){
return( 0 )
}else{
return( exp.trunc(1-p, w, 1-S, N, Ktilde) )
}
}
recovdistC <- function(dp, pp, w, S, N){
## C version of recovdist
.C("recovdist", as.double(dp), as.double(pp), as.integer(length(dp)),
as.double(w), as.double(S), as.integer(N), q = double(N))$q
}
lossdistC.prepay.joint <- function(dp, pp, w, S, N, defaultflag=FALSE){
## C version of lossdist.prepay.joint
r <- .C("lossdistrib_joint", as.double(dp), as.double(pp), as.integer(length(dp)),
as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), q=matrix(0, N, N))$q
return(r)
}
lossdistC.prepay.jointZ <- function(dp, pp, w, S, N, defaultflag = FALSE, rho, Z, wZ){
## N is the size of the grid
## dp is of size n.credits
## pp is of size n.credits
## w is of size n.credits
## S is of size n.credits by nZ
## rho is a vector of doubles of size n.credits
## Z is a vector of length nZ
## w is a vector if length wZ
r <- .C("lossdistrib_joint_Z", as.double(dp), as.double(pp), as.integer(length(dp)),
as.double(w), as.double(S), as.integer(N), as.logical(defaultflag), as.double(rho),
as.double(Z), as.double(wZ), as.integer(length(Z)), output = matrix(0,N,N))
return(r$output)
}
lossrecovdist <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
lossdistrib2 <- if(useC) lossdistC
recovdist <- if(useC) recovdistC
if(missing(prepayprob)){
L <- lossdistrib2(defaultprob, w, S, N, defaultflag)
R <- lossdistrib2(defaultprob, w, 1-S, N)
}else{
L <- lossdistrib2(defaultprob+defaultflag*prepayprob, w, S, N, defaultflag)
R <- recovdist(defaultprob, prepayprob, w, S, N)
}
return(list(L=L, R=R))
}
lossrecovdist.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
## computes the loss and recovery distribution over time
L <- array(0, dim=c(N, ncol(defaultprob)))
R <- array(0, dim=c(N, ncol(defaultprob)))
if(missing(prepayprob)){
for(t in 1:ncol(defaultprob)){
temp <- lossrecovdist(defaultprob[,t], , w, S[,t], N, defaultflag, useC)
L[,t] <- temp$L
R[,t] <- temp$R
}
}else{
for(t in 1:ncol(defaultprob)){
temp <- lossrecovdist(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag, useC)
L[,t] <- temp$L
R[,t] <- temp$R
}
}
return(list(L=L, R=R))
}
lossrecovdist.joint.term <- function(defaultprob, prepayprob, w, S, N, defaultflag=FALSE, useC=TRUE){
## computes the joint loss and recovery distribution over time
Q <- array(0, dim=c(ncol(defaultprob), N, N))
lossdist.joint <- if(useC) lossdistC.jointblas
lossdist.prepay.joint <- if(useC) lossdistC.prepay.jointblas
if(missing(prepayprob)){
for(t in 1:ncol(defaultprob)){
Q[t,,] <- lossdist.joint(defaultprob[,t], w, S[,t], N, defaultflag)
}
}else{
for(t in 1:ncol(defaultprob)){
Q[t,,] <- lossdist.prepay.jointblas(defaultprob[,t], prepayprob[,t], w, S[,t], N, defaultflag)
}
}
return(Q)
}
dist.transform <- function(dist.joint){
## compute the joint (D, R) distribution
## from the (L, R) distribution using D = L+R
distDR <- array(0, dim=dim(dist.joint))
Ngrid <- dim(dist.joint)[2]
for(t in 1:dim(dist.joint)[1]){
for(i in 1:Ngrid){
for(j in 1:Ngrid){
index <- i+j
if(index <= Ngrid){
distDR[t,index,j] <- distDR[t,index,j] + dist.joint[t,i,j]
}else{
distDR[t,Ngrid,j] <- distDR[t,Ngrid,j] +
dist.joint[t,i,j]
}
}
}
distDR[t,,] <- distDR[t,,]/sum(distDR[t,,])
}
return( distDR )
}
shockprob <- function(p, rho, Z, log.p=F){
## computes the shocked default probability as a function of the copula factor
## function is vectorized provided the below caveats:
## p and rho are vectors of same length n, Z is a scalar, returns vector of length n
## p and rho are scalars, Z is a vector of length n, returns vector of length n
if(length(p)==1){
if(rho==1){
return(Z<=qnorm(p))
}else{
return(pnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho), log.p=log.p))
}
}else{
result <- double(length(p))
result[rho==1] <- Z<=qnorm(p[rho==1])
result[rho<1] <- pnorm((qnorm(p[rho<1])-sqrt(rho[rho<1])*Z)/sqrt(1-rho[rho<1]), log.p=log.p)
return( result )
}
}
shockseverity <- function(S, Stilde=1, Z, rho, p){
## computes the severity as a function of the copula factor Z
result <- double(length(S))
result[p==0] <- 0
result[p!=0] <- Stilde * exp( shockprob(S[p!=0]/Stilde*p[p!=0], rho[p!=0], Z, TRUE) -
shockprob(p[p!=0], rho[p!=0], Z, TRUE))
return(result)
}
dshockprob <- function(p,rho,Z){
dnorm((qnorm(p)-sqrt(rho)*Z)/sqrt(1-rho))*dqnorm(p)/sqrt(1-rho)
}
dqnorm <- function(x){
1/dnorm(qnorm(x))
}
fit.prob <- function(Z, w, rho, p0){
## if the weights are not perfectly gaussian, find the probability p such
## E_w(shockprob(p, rho, Z)) = p0
if(p0==0){
return(0)
}
if(rho == 1){
distw <- distr::DiscreteDistribution(Z, w)
return(distr::pnorm(distr::q(distw)(p0)))
}
eps <- 1e-12
dp <- (crossprod(shockprob(p0,rho,Z),w)-p0)/crossprod(dshockprob(p0,rho,Z),w)
p <- p0
while(abs(dp) > eps){
dp <- (crossprod(shockprob(p,rho,Z),w)-p0)/crossprod(dshockprob(p,rho,Z),w)
phi <- 1
while ((p-phi*dp)<0 || (p-phi*dp)>1){
phi <- 0.8*phi
}
p <- p - phi*dp
}
return(p)
}
fit.probC <- function(Z, w, rho, p0){
stopifnot(length(Z)==length(w))
r <- .C("fitprob", as.double(Z), as.double(w), as.integer(length(Z)),
as.double(rho), as.double(p0), q = double(1))
return(r$q)
}
stochasticrecov <- function(R, Rtilde, Z, w, rho, porig, pmod){
## if porig == 0 (probably matured asset) then return orginal recovery
## it shouldn't matter anyway since we never default that asset
if(porig == 0){
return(rep(R, length(Z)))
}else{
ptilde <- fit.prob(Z, w, rho, (1-R)/(1-Rtilde) * porig)
return(abs(1-(1-Rtilde) * exp(shockprob(ptilde, rho, Z, TRUE) - shockprob(pmod, rho, Z, TRUE))))
}
}
stochasticrecovC <- function(R, Rtilde, Z, w, rho, porig, pmod){
r <- .C("stochasticrecov", as.double(R), as.double(Rtilde), as.double(Z),
as.double(w), as.integer(length(Z)), as.double(rho), as.double(porig),
as.double(pmod), q = double(length(Z)))
return(r$q)
}
BClossdist <- function(defaultprob, issuerweights, recov, rho, Z, w,
N=length(recov)+1, defaultflag=FALSE, n.int=500){
if(missing(Z)){
quadrature <- GHquad(n.int)
Z <- quadrature$Z
w <- quadrature$w
}
stopifnot(length(Z)==length(w),
nrow(defaultprob) == length(issuerweights))
## do not use if weights are not gaussian, results would be incorrect
## since shockseverity is invalid in that case (need to use stochasticrecov)
LZ <- matrix(0, N, length(Z))
RZ <- matrix(0, N, length(Z))
L <- matrix(0, N, ncol(defaultprob))
R <- matrix(0, N, ncol(defaultprob))
for(t in 1:ncol(defaultprob)){
for(i in 1:length(Z)){
g.shocked <- shockprob(defaultprob[,t], rho, Z[i])
S.shocked <- shockseverity(1-recov, 1, Z[i], rho, defaultprob[,t])
temp <- lossrecovdist(g.shocked, , issuerweights, S.shocked, N)
LZ[,i] <- temp$L
RZ[,i] <- temp$R
}
L[,t] <- LZ%*%w
R[,t] <- RZ%*%w
}
list(L=L, R=R)
}
BClossdistC <- function(defaultprob, issuerweights, recov, rho, Z, w,
N=length(issuerweights)+1, defaultflag=FALSE){
if(is.null(dim(defaultprob))){
dim(defaultprob) <- c(length(defaultprob),1)
}
stopifnot(length(Z)==length(w),
nrow(defaultprob)==length(issuerweights),
nrow(defaultprob)==length(recov))
L <- matrix(0, N, ncol(defaultprob))
R <- matrix(0, N, ncol(defaultprob))
rho <- rep(rho, length(issuerweights))
r <- .C("BCloss_recov_dist", defaultprob, as.integer(nrow(defaultprob)),
as.integer(ncol(defaultprob)), as.double(issuerweights),
as.double(recov), as.double(Z), as.double(w), as.integer(length(Z)),
as.double(rho), as.integer(N), as.logical(defaultflag), L=L, R=R)
return(list(L=r$L,R=r$R))
}
BCER <- function(defaultprob, issuerweights, recov, K, rho, Z, w,
N=length(issuerweights)+1, defaultflag=FALSE){
stopifnot(length(Z)==length(w),
nrow(defaultprob)==length(issuerweights))
rho <- rep(rho, length(issuerweights))
ELt <- numeric(ncol(defaultprob))
ERt <- numeric(ncol(defaultprob))
r <- .C("BCloss_recov_trunc", defaultprob, as.integer(nrow(defaultprob)),
as.integer(ncol(defaultprob)),
as.double(issuerweights), as.double(recov), as.double(Z), as.double(w),
as.integer(length(Z)), as.double(rho), as.integer(N), as.double(K),
as.logical(defaultflag), ELt=ELt, ERt=ERt)
return(list(ELt=r$ELt, ERt=r$ERt))
}
|