diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-04 15:55:19 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-04 15:55:19 -0500 |
| commit | 0e6ef8ce1055b3a524e2432ffda76f1acceed3d3 (patch) | |
| tree | f51cbd7de78a1908ab9a0d7abefdbc7e673b6fc2 | |
| parent | 347489694571148e0cb940a96fe621a7394b5bfa (diff) | |
| download | cascades-0e6ef8ce1055b3a524e2432ffda76f1acceed3d3.tar.gz | |
Fix unclosed lemma
| -rw-r--r-- | paper/sections/results.tex | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex index 216ad65..a948b20 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -120,10 +120,11 @@ $\nabla\mathcal{L}(\theta^*)$ is given by Lemma~\ref{lem:ub}. Assume {\bf(LF)} holds for some $\alpha>0$. For any $\delta\in(0,1)$: \begin{displaymath} \|\nabla {\cal L}(\theta^*)\|_{\infty} - \leq 2 \sqrt{\frac{\log m}{\eta n^{1 - \delta}}} + \leq 2 \sqrt{\frac{\log m}{\alpha n^{1 - \delta}}} \quad \text{w.p.}\; 1-\frac{1}{e^{n^\delta \log m}} \end{displaymath} +\end{lemma} \begin{proof} The gradient of $\mathcal{L}$ is given by: |
