aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-03 20:34:05 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-03 20:34:05 -0500
commitaf2ac731db5077a802e3ec2924f210cc9fdbe5c6 (patch)
tree9d9f2bcef77ebb2522a7e058245dc4f863c8381e
parenta9acec30743687fdaf1df291b51b346bca7cf5a7 (diff)
downloadcascades-af2ac731db5077a802e3ec2924f210cc9fdbe5c6.tar.gz
more changes
-rw-r--r--src/convex_optimization.py8
-rw-r--r--src/make_plots.py18
2 files changed, 6 insertions, 20 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index 5942c70..913fcb4 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -90,7 +90,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
def F(x=None, z=None):
if x is None:
- return 0, cvxopt.matrix(-.001, (n,1))
+ return 0, cvxopt.matrix(-.1, (n,1))
elif z is None:
y, y_diff = f_x(x, M_val, w_val)
return cvxopt.matrix(float(y), (1, 1)),\
@@ -105,10 +105,10 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
h = cvxopt.matrix(0.0, (n,1))
#Relaxing precision constraints
- cvxopt.solvers.options['feastol'] = 2e-5
- cvxopt.solvers.options['abstol'] = 2e-5
+ # cvxopt.solvers.options['feastol'] = 2e-5
+ # cvxopt.solvers.options['abstol'] = 2e-5
# cvxopt.solvers.options['maxiters'] = 50
- cvxopt.solvers.options['show_progress'] = True
+ cvxopt.solvers.options['show_progress'] = False
try:
theta = cvxopt.solvers.cp(F, G, h)['x']
except ArithmeticError:
diff --git a/src/make_plots.py b/src/make_plots.py
index 201e375..947bf57 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -44,20 +44,6 @@ def watts_strogatz(n_cascades, lbda, passed_function):
algorithms.correctness_measure(G, G_hat, print_values=True)
-# def test():
-# """
-# unit test
-# """
-# G = cascade_creation.InfluenceGraph(max_proba=1, min_proba=.2)
-# G.erdos_init(n=50, p=.2)
-# A = cascade_creation.generate_cascades(G, p_init=.1, n_cascades=1000)
-# G_hat = algorithms.recovery_passed_function(G, A,
-# passed_function=convex_optimization.sparse_recovery,
-# floor_cstt=.1, lbda=.001, n_cascades=1000)
-# algorithms.correctness_measure(G, G_hat, print_values=True)
-
-
if __name__=="__main__":
- watts_strogatz(n_cascades=3000, lbda=.002, passed_function=
- convex_optimization.sparse_recovery)
- #algorithms.greedy_prediction) \ No newline at end of file
+ watts_strogatz(n_cascades=500, lbda=.002, passed_function=
+ convex_optimization.sparse_recovery) \ No newline at end of file