diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-13 11:58:37 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-13 11:58:37 -0500 |
| commit | bb4b6a3d52867600d003ca677ba37e0be1cce53c (patch) | |
| tree | 88f933b7eb3a1bc226d79444beb1c4f41baadf50 | |
| parent | 91287ed4ec2157f1318074c7aa24786d7bcef3a9 (diff) | |
| download | cascades-bb4b6a3d52867600d003ca677ba37e0be1cce53c.tar.gz | |
maximum_likelihood_approach.tex
| -rw-r--r-- | notes/maximum_likelihood_approach.tex | 114 |
1 files changed, 91 insertions, 23 deletions
diff --git a/notes/maximum_likelihood_approach.tex b/notes/maximum_likelihood_approach.tex index acc196b..18586e8 100644 --- a/notes/maximum_likelihood_approach.tex +++ b/notes/maximum_likelihood_approach.tex @@ -87,44 +87,112 @@ In conclusion, for $\delta>0$, $\lambda := 2 \sqrt{\frac{n^{\delta + 1} \log p}{ \section*{Condition~\ref{eq:RSC_condition}} -Finally, note that: +Note that: \begin{equation} \nabla_{kj} f(\theta) = \sum_{i=1}^n \frac{b^i x_k^i x_j^i e^{\langle x^i, \theta \rangle}}{\left(1 - e^{\langle x^i, \theta \rangle} \right)^2} = \sum_{i=1}^n b^i x_k^i x_j^i \frac{\mathbb{P}(\text{node } \alpha \text { not infected})}{\mathbb{P}(\text{node } \alpha \text { infected})^2} \end{equation} -\subsection*{First term} -We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in {\cal C}, \Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta \geq \gamma n \|\Delta\|_2^2$. If we denote $p_i := \mathbb{P}(\text{node } \alpha \text { infected})$, we have: -\begin{equation} -\Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta = \sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] + 2 \sum_{k< j} \Delta_k \Delta_j \left[ \sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}\right] -\end{equation} -We are first going to find a lower-bound for $\sum_i b^i x_k^i \frac{1 - p_i}{p_i^2}$ by computing a lower-bound on its expectation and concluding with Hoeffding's inequality. If we only consider the first measurement of every cascade and we further suppose that $p_i < 1 - \eta$ no matter the configuration of active nodes (slightly less strong than correlation decay). +We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in {\cal C}, \Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta \geq \gamma n \|\Delta\|_2^2$. + +\paragraph{Notation} Let $p_i := \mathbb{P}(\text{node } \alpha \text { infected})$. Let $Z^i_k := b^i x^i_k \frac{1-p_i}{p_i^2}$and let $Z^i_{k,j} := b^i x^i_k x^i_j \frac{1-p_i}{p_i^2}$. We also define $Z_k := \sum_i Z^i_k$ and $Z_{k,j} := \sum_i Z^i_{k,j}$. + +\begin{align} +\Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta & = \sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] + 2 \sum_{k< j} \Delta_k \Delta_j \left[ \sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}\right] \nonumber \\ +& = \sum_k \Delta_k^2 Z_k + 2 \sum_{k< j} \Delta_k \Delta_j Z_{k,j} \nonumber +\end{align} + + + +\begin{lemma} +\label{lem:first_term} +Suppose that $\forall k$, $\mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] \geq 1 + \alpha$, then with probability greater than $1 - 2 p e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N}$, $$\forall k, \ Z_k > c \alpha p_{\text{init}} N$$ +\end{lemma} + +\begin{proof} +Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active. +\begin{align} +\nonumber +\mathbb{E}[Z^i_k] & = \mathbb{P}(x^i_k = 1) \mathbb{E}_{S(k)} \left[ \mathbb{E}[b^i | S(k)] \frac{1 - p_i}{p_i^2} \right] \\ \nonumber +& = p_{\text{init}} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber +& \geq \alpha p_{\text{init}} \quad \text{by assumption} +\end{align} + +Note that $|Z^i_k| < \frac{1}{p_{\text{min}}^2}$ {\it a.s.}. By Hoeffding's first inequality, for $0<c <1$, \begin{align} -\mathbb{E}\left(\sum_i b^i x_k^i \frac{1 - p_i} {p_i}^2 \right) & = \sum_i \mathbb{E} \left(x_k^i \frac{1 - p_i} {p_i}^2 \right) \nonumber \\ -& = \sum_i \mathbb{P}(b^i =1 | x_k^i =1) \mathbb{P}(x^i_k =1) \mathbb{E}\left(\frac{1 - p_i}{p_i^2} \middle| b^i =1 = x_k^i \right) \nonumber \\ -& = ATTENTION IL Y A ERREUR A LA LIGNE SUIVANTE: \\ -& \geq \min \left(1 , 1 - (1 - p_{init})^s \right)\cdot p_{init} \cdot \frac{\eta}{(1 - \eta)^2} \nonumber \\ -& \geq s p_{init}^2 \frac{\eta}{(1 - \eta)^2} \quad \text{si }s < \frac{1}{p_{init}} \nonumber \\ -& \geq p_{init} \frac{\eta}{(1 - \eta)^2} \quad \text{si }s > \frac{1}{p_{init}} \nonumber +\nonumber +\mathbb{P}\left(Z_k < c \alpha p_{\text{init}} N \right) & < 2 e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber +& < 2 e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N} \end{align} -We can conclude using the following Hoeffding inequality for independent random variables bounded by $[0, b_i]$ by noticing that our variables are bounded by above by $\frac{1 - p_{\min}}{p_{\min}^2}$ +We conclude by union bound. +\end{proof} + +\begin{lemma} +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - pe^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^4 N}$, $$\forall k,j, \ Z_{k,j} < c \beta p_{\text{init}}^2 N$$ +\end{lemma} + +\begin{proof} +We follow the same reasoning as Lemma~\ref{lem:first_term}: +\begin{align} +\nonumber +\mathbb{E}[Z^i_{k,j}] & = p_{\text{init}}^2 \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber +& \leq \beta p_{\text{init}}^2 \quad \text{by assumption} +\end{align} + +By Hoeffding's second inequality, for $0 < c < 1$, +\begin{align} +\nonumber +\mathbb{P}\left(Z_{k,j} > c \beta p_{\text{init}}^2 N \right) & \leq e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber +& \leq e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^4 N} +\end{align} +We conclude by union bound. +\end{proof} + +\begin{proposition} +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := p_{\text{init}}(\alpha - \beta p_{\text{init}})$ +\end{proposition} + \paragraph{Hoeffding's inequality} -\begin{equation} + +For $t \in \mathbb{R}$ and independent variables $Z_i$ such that $|Z_i|<b$ {\it a.s.}, we have: +\begin{align} \label{eq:hoeffding_inequality} -\mathbb{P} \left(\sum Z_i \geq \mathbb{E}[\sum Z_i] - t \right) \leq \exp\left(- \frac{2 N t^2}{b^2} \right) -\end{equation} +\mathbb{P} \left( \middle| \sum_{i=1}^N Z_i - \mathbb{E}\left[\sum_{i=1}^N Z_i \right] \middle| \geq t \right) \leq 2 \exp\left(- \frac{2 t^2}{N b^2} \right) \nonumber \\ +\mathbb{P} \left(\sum_{i=1}^N Z_i \geq \mathbb{E}\left[\sum_{i=1}^N Z_i \right] + t \right) \leq \exp\left(- \frac{2 t^2}{N b^2} \right) \nonumber +\end{align} + + +% \subsection*{First term} + +% We are first going to find a lower-bound for $\sum_i b^i x_k^i \frac{1 - p_i}{p_i^2}$ by computing a lower-bound on its expectation and concluding with Hoeffding's inequality. If we only consider the first measurement of every cascade and we further suppose that $p_i < 1 - \eta$ no matter the configuration of active nodes (slightly less strong than correlation decay). + +% \begin{align} +% \mathbb{E}\left(\sum_i b^i x_k^i \frac{1 - p_i} {p_i}^2 \right) & = \sum_i \mathbb{E} \left(x_k^i \frac{1 - p_i} {p_i}^2 \right) \nonumber \\ +% & = \sum_i \mathbb{P}(b^i =1 | x_k^i =1) \mathbb{P}(x^i_k =1) \mathbb{E}\left(\frac{1 - p_i}{p_i^2} \middle| b^i =1 = x_k^i \right) \nonumber \\ +% & \geq \sum_{i=1}^n p_{\min} \cdot \min \left(1 , 1 - (1 - p_{init})^s \right)\cdot p_{init} \cdot \frac{\eta}{(1 - \eta)^2} \nonumber \\ +% & \geq s p_{init}^2 p_{\min} \frac{\eta}{(1 - \eta)^2} \quad \text{si }s < \frac{1}{p_{init}} \nonumber \\ +% & \geq p_{init} p_{\min} \frac{\eta}{(1 - \eta)^2} \quad \text{si }s > \frac{1}{p_{init}} \nonumber +% \end{align} + +% We can conclude using the following Hoeffding inequality for independent random variables bounded by $[0, b_i]$ by noticing that our variables are bounded by above by $\frac{1 - p_{\min}}{p_{\min}^2}$ + +% \paragraph{Hoeffding's inequality} +% \begin{equation} +% \label{eq:hoeffding_inequality} +% \mathbb{P} \left(\sum Z_i \geq \mathbb{E}[\sum Z_i] - t \right) \leq \exp\left(- \frac{2 N t^2}{b^2} \right) +% \end{equation} -It follows that for $c<1$ with probability $1 - \exp \left( - n^3 c^2 s^2 p_{init}^4 p_{\min}^4 \frac{\eta^2}{(1 - \eta)^4} \right)$, we have that $$\sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] \geq \gamma N =: (1 -c) s p_{init}^2 \frac{\eta}{(1 - \eta)^2} N$$ +% It follows that for $c<1$ with probability $1 - \exp \left( - n^3 c^2 s^2 p_{init}^4 p_{\min}^6 \frac{\eta^2}{(1 - \eta)^4} \right)$, we have that $$\sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] \geq \gamma N =: (1 -c) s p_{init}^2 p_{\min} \frac{\eta}{(1 - \eta)^2} N$$ -\begin{remark} -Would it be possible to extend this result using Azuma's inequality on Martingales to not just the first measurement of every cascade? -\end{remark} +% \begin{remark} +% Would it be possible to extend this result using Azuma's inequality on Martingales to not just the first measurement of every cascade? +% \end{remark} -\subsection*{Second term} -We are now going to find an upper-bound on the term $\sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}$. +% \subsection*{Second term} +% We are now going to find an upper-bound on the term $\sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}$. \section*{Conclusion} |
