diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-06 15:28:12 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-06 15:28:12 -0500 |
| commit | f003e432e163756a70662fe304f667b612e9ce78 (patch) | |
| tree | 103ed60154a19b3b458e0810a17eb44f0c185d06 | |
| parent | 6dfc20ac64ca52c438d4a311377631e3ebd603ed (diff) | |
| download | cascades-f003e432e163756a70662fe304f667b612e9ce78.tar.gz | |
Fix extra {
| -rw-r--r-- | paper/sections/results.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex index f32b037..8a7b4f9 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -341,7 +341,7 @@ whenever $f(\inprod{\theta^*}{x})\notin\{0,1\}$. \label{prop:fi} If $\E[\nabla^2\mathcal{L}(\theta^*)]$ verifies the $(S,\gamma)$-{\bf (RE)} condition and assuming {\bf (LF)} and {\bf (LF2)}, then for $\delta> 0$, if $n^{1-\delta}\geq -\frac{M+2}{21\gamma\alpha}s^2\log m} +\frac{M+2}{21\gamma\alpha}s^2\log m $, $\nabla^2\mathcal{L}(\theta^*)$ verifies the $(S,\frac{\gamma}{2})$-(RE) condition, w.p $\geq 1-e^{-n^\delta\log m}$. \end{proposition} |
