diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-12-11 18:09:05 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-12-11 18:16:08 -0500 |
| commit | 3fe7048cfee40603a5727f16f609e9256ed68ff1 (patch) | |
| tree | 9eef90c256435e359cde4c7488fde38aafaa72f6 /finale/final_report.tex | |
| parent | ed1f54061ce8cda0aa20adbad2c470758a91fa13 (diff) | |
| download | cascades-3fe7048cfee40603a5727f16f609e9256ed68ff1.tar.gz | |
Minor reformulation in abstract
Diffstat (limited to 'finale/final_report.tex')
| -rw-r--r-- | finale/final_report.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/finale/final_report.tex b/finale/final_report.tex index 4203fa5..522e3a7 100644 --- a/finale/final_report.tex +++ b/finale/final_report.tex @@ -76,8 +76,8 @@ Diffusion Processes} Maximum-Likelihood estimator for the edge weights, a Bayesian treatment of the problem is still lacking. In this work, we establish a scalable Bayesian framework for the unified NIP formulation of \cite{pouget}. Furthermore, we - show how this Bayesian framework leads to intuitive and effective heuristics - to greatly speed up learning. + show how this Bayesian framework leads to intuitive and effective active + learning heuristics which greatly speed up learning. \end{abstract} \section{Introduction} |
