aboutsummaryrefslogtreecommitdiffstats
path: root/finale/final_report.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-12-11 18:09:05 -0500
committerThibaut Horel <thibaut.horel@gmail.com>2015-12-11 18:16:08 -0500
commit3fe7048cfee40603a5727f16f609e9256ed68ff1 (patch)
tree9eef90c256435e359cde4c7488fde38aafaa72f6 /finale/final_report.tex
parented1f54061ce8cda0aa20adbad2c470758a91fa13 (diff)
downloadcascades-3fe7048cfee40603a5727f16f609e9256ed68ff1.tar.gz
Minor reformulation in abstract
Diffstat (limited to 'finale/final_report.tex')
-rw-r--r--finale/final_report.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/finale/final_report.tex b/finale/final_report.tex
index 4203fa5..522e3a7 100644
--- a/finale/final_report.tex
+++ b/finale/final_report.tex
@@ -76,8 +76,8 @@ Diffusion Processes}
Maximum-Likelihood estimator for the edge weights, a Bayesian treatment of
the problem is still lacking. In this work, we establish a scalable Bayesian
framework for the unified NIP formulation of \cite{pouget}. Furthermore, we
- show how this Bayesian framework leads to intuitive and effective heuristics
- to greatly speed up learning.
+ show how this Bayesian framework leads to intuitive and effective active
+ learning heuristics which greatly speed up learning.
\end{abstract}
\section{Introduction}