aboutsummaryrefslogtreecommitdiffstats
path: root/finale/sections
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-12-11 16:14:54 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-12-11 16:14:54 -0500
commit16493ef0bb95d1faf1a00d67682bca889ed8c55c (patch)
treef9c3c6f75c060ce5b7f86f30135cd7d7cb921787 /finale/sections
parentea8ab1d0efa17826ba2d151e09026950fd1cd738 (diff)
downloadcascades-16493ef0bb95d1faf1a00d67682bca889ed8c55c.tar.gz
conclusion of bayesian stuff
Diffstat (limited to 'finale/sections')
-rw-r--r--finale/sections/bayesian.tex19
1 files changed, 16 insertions, 3 deletions
diff --git a/finale/sections/bayesian.tex b/finale/sections/bayesian.tex
index 1426c97..6e44b08 100644
--- a/finale/sections/bayesian.tex
+++ b/finale/sections/bayesian.tex
@@ -119,6 +119,19 @@ counterpart.
\end{split}
\end{equation}
-Reparametrization trick
-Batches
-Algorithm
+Once again, the product form of the prior allows us to decompose the expected
+log-likelihood term as such:
+\begin{equation}
+ \begin{split}
+ &\mathbb{E}_{q_{\mathbf{\Theta'}}} \log \mathcal{L}(\mathbf{x}_c |
+ \mathbf{\Theta}) = - \sum_{j,c , t } \mu_j \cdot x^t_c \\
+ &+ \sum_{j, c, t} \mathbb{E}_{\theta_j \sim\mathcal{N}(\vec 0_n, I_n)}
+ \left[ (x_c^{t+1})_j \log \left(1 - e^{-(\sigma_j \cdot \theta_j + \mu_j)
+ \cdot x_c^t}\right) \right]
+ \end{split}
+\end{equation}
+
+Note that by reparametrizing $\theta_j' = \sigma_j \cdot \theta_j + \mu_j$,
+where $\sigma_j \cdot \theta_j$ is the elementwise multiplication operation, we
+can easily compute the gradient of the variational objective with respect to
+$\mu_j$ and $\sigma_j$.