diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-05 11:00:48 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-05 11:00:48 -0500 |
| commit | 011a965b4d36ef4a9d42ab945a402f8cc602f496 (patch) | |
| tree | 50836f725ee592b854976dc4a19b0af0a0eeb3e2 /jpa_test/algorithms.py | |
| parent | 9c682e64d18c9cddfa2575adc68c57693862b0f5 (diff) | |
| download | cascades-011a965b4d36ef4a9d42ab945a402f8cc602f496.tar.gz | |
fix bug convex_optimization
Diffstat (limited to 'jpa_test/algorithms.py')
| -rw-r--r-- | jpa_test/algorithms.py | 14 |
1 files changed, 2 insertions, 12 deletions
diff --git a/jpa_test/algorithms.py b/jpa_test/algorithms.py index be9caba..2ed015a 100644 --- a/jpa_test/algorithms.py +++ b/jpa_test/algorithms.py @@ -9,8 +9,8 @@ import convex_optimization def greedy_prediction(G, cascades): """ Returns estimated graph from Greedy algorithm in "Learning Epidemic ..." - TODO: write cleaner code? """ + #TODO: This function is deprecated! G_hat = cascade_creation.InfluenceGraph(max_proba=None) G_hat.add_nodes_from(G.nodes()) for node in G_hat.nodes(): @@ -44,9 +44,7 @@ def recovery_l1obj_l2constraint(G, cascades): G_hat.add_nodes_from(G.nodes()) for node in G_hat.nodes(): M, w = cascade_creation.icc_matrixvector_for_node(cascades, node) - M = M.astype("float64") - edges_node = convex_optimization.l1obj_l2constraint(M,w) - print edges_node + p_node, __ = convex_optimization.l1obj_l2constraint(M,w) def correctness_measure(G, G_hat): @@ -73,13 +71,5 @@ def test(): recovery_l1obj_l2constraint(G, A) - G_hat = greedy_prediction(G, A) - fp, fn, gp = correctness_measure(G, G_hat) - print "False Positive: {}".format(len(fp)) - print "False Negative: {}".format(len(fn)) - print "Good Positives: {}".format(len(gp)) - t1 = time.time() - print t1 - t0 - if __name__=="__main__": test() |
