diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-01 21:14:27 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-01 21:14:27 -0500 |
| commit | f8678b1b37f9136814be0197aabf32831d0c013e (patch) | |
| tree | d46e76b4b379ab9a88ad999ec124b1b93e204a79 /jpa_test/algorithms.py | |
| parent | b1a6d4397bd1dc784a68987fc645eabe2bbcc8ec (diff) | |
| download | cascades-f8678b1b37f9136814be0197aabf32831d0c013e.tar.gz | |
rip_condition
Diffstat (limited to 'jpa_test/algorithms.py')
| -rw-r--r-- | jpa_test/algorithms.py | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/jpa_test/algorithms.py b/jpa_test/algorithms.py index 76a3c51..be9caba 100644 --- a/jpa_test/algorithms.py +++ b/jpa_test/algorithms.py @@ -34,7 +34,7 @@ def greedy_prediction(G, cascades): return G_hat -def sparserecovery(G, cascades): +def recovery_l1obj_l2constraint(G, cascades): """ Returns estimated graph from following convex program: min |theta_1| + lbda | exp(M theta) -(1- w)| @@ -44,8 +44,8 @@ def sparserecovery(G, cascades): G_hat.add_nodes_from(G.nodes()) for node in G_hat.nodes(): M, w = cascade_creation.icc_matrixvector_for_node(cascades, node) - M = M.astype("int8") - edges_node = convex_optimization.l1regls(M,w) + M = M.astype("float64") + edges_node = convex_optimization.l1obj_l2constraint(M,w) print edges_node @@ -69,9 +69,9 @@ def test(): G.erdos_init(n = 100, p = .5) import time t0 = time.time() - A = cascade_creation.generate_cascades(G, .1, 100) + A = cascade_creation.generate_cascades(G, .2, 2) - sparserecovery(G, A) + recovery_l1obj_l2constraint(G, A) G_hat = greedy_prediction(G, A) fp, fn, gp = correctness_measure(G, G_hat) |
