aboutsummaryrefslogtreecommitdiffstats
path: root/jpa_test/cascade_creation.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2014-11-28 14:21:22 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2014-11-28 14:21:22 -0500
commit6f092c5d1f6272049855257b85a924382724e1c6 (patch)
tree6ef3f4fb7bef75711fdbc362c4ff5d3a93cf48ec /jpa_test/cascade_creation.py
parente1961c8b7e2a5e50cd9e48983931dd47a69187a7 (diff)
downloadcascades-6f092c5d1f6272049855257b85a924382724e1c6.tar.gz
influence-cascades
Diffstat (limited to 'jpa_test/cascade_creation.py')
-rw-r--r--jpa_test/cascade_creation.py56
1 files changed, 33 insertions, 23 deletions
diff --git a/jpa_test/cascade_creation.py b/jpa_test/cascade_creation.py
index cdcfd32..ac094b9 100644
--- a/jpa_test/cascade_creation.py
+++ b/jpa_test/cascade_creation.py
@@ -1,31 +1,35 @@
import networkx as nx
import numpy as np
-def icc_cascade(G, p_init):
+class InfluenceGraph(nx.Graph):
"""
- input: graph with prob as edge attr
- returns: 2D boolean matrix with indep. casc.
- where True means node was active at that time step
- p_init: proba that node in seed set
+ Inherits from the graph class
+ with new init function and other attributes
"""
- susceptible = np.ones(G.number_of_nodes(), dtype=bool)
- active = np.random.rand(G.number_of_nodes()) < p_init
- susceptible = susceptible - active
- cascade = []
- while sum(active) and sum(susceptible):
- cascade.append(active)
- tmp = np.zeros(G.number_of_nodes(), dtype=bool)
- for node in np.where(active)[0]:
- for edge in G.edges(node, data=True):
- tmp[edge[1]] += np.random.rand() < edge[2]["weight"] \
- and susceptible[edge[1]]
- active = tmp
- susceptible = susceptible - active
- cascade.append(active)
- return cascade
+ def __init__(self, max_proba, *args, **kwargs):
+ self.max_proba = max_proba
+ super(InfluenceGraph, self).__init__(*args, **kwargs)
+
+ def erdos_init(self, n, p):
+ G = nx.erdos_renyi_graph(n, p, directed=True)
+ self.add_nodes_from(G.nodes())
+ self.add_edges_from(G.edges())
+
+ @property
+ def mat(self):
+ if not hasattr(self, '_mat'):
+ self._mat = (self.max_proba * np.random.rand(len(self), len(self))
+ * nx.adjacency_matrix(self))
+ return self._mat
+
+ @property
+ def logmat(self):
+ if not hasattr(self, '_logmat'):
+ self._logmat = np.log(1 - self.mat)
+ return self._logmat
-def icc_cascade_2(G, p_init):
+def icc_cascade(G, p_init):
"""
input: graph with prob as edge attr
returns: 2D boolean matrix with indep. casc.
@@ -45,22 +49,28 @@ def icc_cascade_2(G, p_init):
return cascade
+def concat_cascades(cascades):
+ """
+ Concatenate list of cascades into matrix
+ """
+
+
def test():
"""
unit test
"""
G = nx.erdos_renyi_graph(1000, 1, directed=True)
G.logmat = np.zeros((G.number_of_nodes(), G.number_of_nodes()))
+ G.mat = G.logmat
for edge in G.edges(data=True):
edge[2]['weight'] = .3*np.random.rand()
G.logmat[edge[0],edge[1]] = np.log(1 - edge[2]["weight"])
+ G.mat[edge[0], edge[1]] = edge[2]["weight"]
import time
t0 = time.time()
print len(icc_cascade(G, p_init=.1))
t1 = time.time()
print t1 - t0
- print len(icc_cascade_2(G, p_init=.1))
- print time.time() - t1
if __name__ == "__main__":
test()