aboutsummaryrefslogtreecommitdiffstats
path: root/jpa_test/convex_optimization.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2014-11-30 23:17:41 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2014-11-30 23:17:41 -0500
commitb49e39e300f9d87310f6cce20018427a98f34486 (patch)
tree272262ef3f19a5170dfd74dadda37dd9c3b61fb8 /jpa_test/convex_optimization.py
parent2a6010634417eac9bf2ac4682ac3675dc5074518 (diff)
downloadcascades-b49e39e300f9d87310f6cce20018427a98f34486.tar.gz
convex_optimization first draft
Diffstat (limited to 'jpa_test/convex_optimization.py')
-rw-r--r--jpa_test/convex_optimization.py47
1 files changed, 47 insertions, 0 deletions
diff --git a/jpa_test/convex_optimization.py b/jpa_test/convex_optimization.py
new file mode 100644
index 0000000..ebd68e3
--- /dev/null
+++ b/jpa_test/convex_optimization.py
@@ -0,0 +1,47 @@
+import theano
+from theano import tensor, function
+import numpy as np
+import cvxopt
+
+
+
+def l1regls(M_val, w_val):
+ """
+ Solves:
+ min - sum theta
+ s.t theta <= 0
+ |e^{M*theta} - (1 - w)|_2 <= 1
+ """
+ m, n = M_val.shape
+ c = cvxopt.matrix(-1.0, (n,1))
+
+ theta = tensor.row().T
+ z = tensor.row().T
+ theta_ = theta.flatten()
+ z_ = z.flatten()
+ M = theano.shared(M_val.astype(theano.config.floatX))
+ w = theano.shared(w_val.astype(theano.config.floatX))
+ y = (tensor.exp(M.dot(theta_)) - (1 - w)).norm(2) - 1
+ y_diff = tensor.grad(y, theta_)
+ y_hess = z[0] * theano.gradient.hessian(y, theta_)
+ f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
+ f_xz = theano.function([theta, z], [y, y_diff, y_hess])
+
+ def F(x=None, z=None):
+ if x is None:
+ return 1, cvxopt.matrix(1.0, (n,1))
+ elif z is None:
+ y, y_diff = f_x(x)
+ return cvxopt.matrix(float(y), (1, 1)), cvxopt.matrix(y_diff.astype("float64")).T
+ else:
+ y, y_diff, y_hess = f_xz(x, z)
+ return cvxopt.matrix(float(y), (1, 1)), \
+ cvxopt.matrix(y_diff.astype("float64")).T, \
+ cvxopt.matrix(y_hess.astype("float64"))
+
+ return cvxopt.solvers.cpl(c,F)['x']
+
+if __name__=="__main__":
+ M_val = np.random.rand(100, 20)
+ w_val = np.random.rand(100)
+ l1regls(M_val, w_val)