diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-03-09 13:50:20 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-03-09 13:50:33 -0400 |
| commit | 843f75943d25f4e180493142b6da0968621b9a78 (patch) | |
| tree | a1c7e5fa8898e663f4009715bd8101ac5696d7c8 /notes/cracking_cascades_classposter.tex | |
| parent | c73f5ffb14020f8997488d1edf6594833fcbbef7 (diff) | |
| download | cascades-843f75943d25f4e180493142b6da0968621b9a78.tar.gz | |
Big reorganisation of the repo
Diffstat (limited to 'notes/cracking_cascades_classposter.tex')
| -rw-r--r-- | notes/cracking_cascades_classposter.tex | 461 |
1 files changed, 0 insertions, 461 deletions
diff --git a/notes/cracking_cascades_classposter.tex b/notes/cracking_cascades_classposter.tex deleted file mode 100644 index 3f8204e..0000000 --- a/notes/cracking_cascades_classposter.tex +++ /dev/null @@ -1,461 +0,0 @@ -\documentclass[final]{beamer} -\usepackage[utf8]{inputenc} -\usepackage[scale=1.6]{beamerposter} % Use the beamerposter package for laying out the poster - -\usetheme{confposter} % Use the confposter theme supplied with this template - -\usepackage{color, bbm} -\setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles -\setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks -\setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the highlighted block titles -\setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body of highlighted blocks -% Many more colors are available for use in beamerthemeconfposter.sty - -%----------------------------------------------------------- -% Define the column widths and overall poster size -% To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns -% In this template, the separation width chosen is 0.024 of the paper width and a 4-column layout -% onecolwid should therefore be (1-(# of columns+1)*sepwid)/# of columns e.g. (1-(4+1)*0.024)/4 = 0.22 -% Set twocolwid to be (2*onecolwid)+sepwid = 0.464 -% Set threecolwid to be (3*onecolwid)+2*sepwid = 0.708 - -\newlength{\sepwid} -\newlength{\onecolwid} -\newlength{\twocolwid} -\newlength{\threecolwid} -\setlength{\paperwidth}{48in} % A0 width: 46.8in -\setlength{\paperheight}{40in} % A0 height: 33.1in -\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between columns -\setlength{\onecolwid}{0.22\paperwidth} % Width of one column -\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns -\setlength{\threecolwid}{0.708\paperwidth} % Width of three columns -\setlength{\topmargin}{-1in} % Reduce the top margin size -%----------------------------------------------------------- - -\usepackage{graphicx} % Required for including images - -\usepackage{booktabs} % Top and bottom rules for tables - - - -%---------------------------------------------------------------------------------------- -% TITLE SECTION -%---------------------------------------------------------------------------------------- - -\title{Sparse Recovery for Graph Reconstruction } % Poster title - -\author{Eric Balkanski, Jean Pouget-Abadie} % Author(s) - -\institute{Harvard University} % Institution(s) -%---------------------------------------------------------------------------------------- -\begin{document} -\addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks -\addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under highlighted (alert) blocks - -\setlength{\belowcaptionskip}{2ex} % White space under figures -\setlength\belowdisplayshortskip{2ex} % White space under equations - -\begin{frame}[t] % The whole poster is enclosed in one beamer frame - -\begin{columns}[t] % The whole poster consists of three major columns, the second of which is split into two columns twice - the [t] option aligns each column's content to the top - -\begin{column}{\sepwid}\end{column} % Empty spacer column - -\begin{column}{\onecolwid} % The first column - -%---------------------------------------------------------------------------------------- -% INTODUCTION -%---------------------------------------------------------------------------------------- - - -%\vspace{- 15.2 cm} -%\begin{center} -%{\includegraphics[height=7em]{logo.png}} % First university/lab logo on the left -%\end{center} - -%\vspace{4.6 cm} - -\begin{block}{Problem Statement} -\begin{center} -\bf{How can we reconstruct a graph on which observed cascades spread?} -\end{center} -\end{block} - - -%{\bf Graph Reconstruction}: - -%\begin{itemize} -%\item \{${\cal G}, \vec p$\}: directed graph, edge probabilities -%\item $F$: cascade generating model -%\item ${\cal M} := F\{{\cal G}, \vec p\}$: cascade -%\end{itemize} - -%{\bf Objective}: -%\begin{itemize} -%\item Find algorithm which computes $F^{-1}({\cal M}) = \{{\cal G}, \vec p\}$ w.h.p., i.e. recovers graph from cascades. -%\end{itemize} - -%{\bf Approach} -%\begin{itemize} -%\item Frame graph reconstruction as a {\it Sparse Recovery} problem for two cascade generating models. -%\end{itemize} - -%Given a set of observed cascades, the \textbf{graph reconstruction problem} consists of finding the underlying graph on which these cascades spread. We assume that these cascades come from the classical \textbf{Independent Cascade Model} where at each time step, newly infected nodes infect each of their neighbor with some probability. - -%In previous work, this problem has been formulated in different ways, including a convex optimization and a maximum likelihood problem. However, there is no known algorithm for graph reconstruction with theoretical guarantees and with a reasonable required sample size. - -%We formulate a novel approach to this problem in which we use \textbf{Sparse Recovery} to find the edges in the unknown underlying network. Sparse Recovery is the problem of finding the sparsest vector $x$ such that $\mathbf{M x =b}$. In our case, for each node $i$, we wish to recover the vector $x = p_i$ where $p_{i_j}$ is the probability that node $j$ infects node $i$ if $j$ is active. To recover this vector, we are given $M$, where row $M_{t,k}$ indicates which nodes are infected at time $t$ in observed cascade $k$, and $b$, where $b_{t+1,k}$ indicates if node $i$ is infected at time $t+1$ in cascade $k$. Since most nodes have a small number of neighbors in large networks, we can assume that these vectors are sparse. Sparse Recovery is a well studied problem which can be solved efficiently and with small error if $M$ satisfies certain properties. In this project, we empirically study to what extent $M$ satisfies the Restricted Isometry Property. - - -%--------------------------------------------------------------------------------- -%--------------------------------------------------------------------------------- - -\begin{block}{Voter Model} - -\begin{figure} -\centering -\includegraphics[width=0.6\textwidth]{images/voter.png} -\end{figure} - - - -\vspace{0.5 cm} -{\bf Description} - -\vspace{0.5 cm} - -\begin{itemize} -\item $\mathbb{P}$({\color{blue} blue} at $t=0) = p_{\text{init}}$ -\item $\mathbb{P}$({\color{blue} blue} at $t+1) = \frac{\text{Number of {\color{blue}blue} neighbors}}{\text{Total number of neighbors}}$ -\end{itemize} - -\vspace{0.5 cm} - -{\bf Sparse Recovery Formulation} - -\vspace{0.5 cm} - - -To recover the neighbors of $v_1$, observe which nodes are {\color{red} red} (1) or {\color{blue} blue} (0) at time step $t$: -\begin{align*} -&v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \hspace{0.2 cm} v_5 &\\ -\vspace{1 cm} -M = & \left( \begin{array}{cccc} -0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ -\end{array} \right) & \begin{array}{l} \hspace{ - 5cm} -\text{time step 0} \\ - \hspace{ - 5cm} \text{time step 1} \\ -\end{array} -\end{align*} - -and which color $v_1$ is at time step $t+1$ due to $M$: - -\begin{align*} -b_1 = & \left( \begin{array}{c} -1 \\ -1 \\ -\end{array} \right) & \begin{array}{l} \hspace{ - 5cm} -\text{time step 1} \\ - \hspace{ - 5cm} \text{time step 2} \\ - \end{array} -\end{align*} - -Then , - -\begin{equation} -\boxed{M \vec x_1 = \vec b_1 + \epsilon \nonumber} -\end{equation} - -where $(\vec x_{1})_j := \frac{\text{1}}{\text{deg}(i)} \cdot \left[\text{j parent of 1 in }{\cal G}\right] $ - - -\end{block} - - - - - -%--------------------------------------------------------------------------------- -%--------------------------------------------------------------------------------- - - -%--------------------------------------------------------------------------------- -%--------------------------------------------------------------------------------- - - - - - - -%--------------------------------------------------------------------------------- -%--------------------------------------------------------------------------------- - - - -\end{column} % End of the first column - -\begin{column}{\sepwid}\end{column} % Empty spacer column - -\begin{column}{\onecolwid} % The first column - -%---------------------------------------------------------------------------------------- -% CONSTRAINT SATISFACTION - BACKTRACKING -%---------------------------------------------------------------------------------------- -\begin{block}{Independent Cascades Model} -\begin{figure} -\centering -\includegraphics[width=0.6\textwidth]{images/icc.png} -\end{figure} - -\vspace{0.5 cm} - -{\bf Description} - -\vspace{0.5 cm} - -\begin{itemize} -\item Three possible states: {\color{blue} susceptible}, {\color{red} infected}, {\color{yellow} inactive } -\item $\mathbb{P}$(infected at t=0)$=p_{\text{init}}$ -\item Infected node $j$ infects its susceptible neighbors $i$ with probability $p_{j,i}$ independently -\end{itemize} - -\vspace{0.5 cm} - -{\bf Sparse Recovery Formulation} - -\vspace{0.5 cm} - -To recover the neighbors of $v_5$,observe which nodes are {\color{red} red} (1), {\color{blue} blue} (0), or {\color{yellow} yellow} (0) at time step $t$: -\begin{align*} -&v_1 \hspace{0.2 cm} v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \\ -\vspace{1 cm} -M = & \left( \begin{array}{cccc} -1 & 0 & 0 & 0 \\ -0 & 1 & 1 & 0 \\ -\end{array} \right) \begin{array}{l} \hspace{ 1cm} -\text{time step 0} \\ - \hspace{ 1cm} \text{time step 1} \\ - \end{array} -\end{align*} - -and if $M$ caused $v_5$ to be infected at time step $t+1$: - -\begin{align*} -b_5 = & \left( \begin{array}{c} -0 \\ -1 \\ -\end{array} \right) \begin{array}{l} \hspace{ 1cm} -\text{time step 1} \\ - \hspace{ 1cm} \text{time step 2} \\ - \end{array} -\end{align*} - - -Then, - -\begin{equation} -\boxed{e^{M \vec \theta_5} = (1 - \vec b_5) + \epsilon} \nonumber -\end{equation} - -where $(\vec \theta_5)_j := \log ( 1 - p_{j,5}) $ - -\vspace{1 cm} - - -This problem is a {\bf Noisy Sparse Recovery} problem, which has been studied extensively. Here, the vectors $\vec x_i$ are deg(i)-sparse. - - -\end{block} - -%---------------------------------------------------------------------------------------- - - - - - - - - - -%---------------------------------------------------------------------------------------- -% MIP -%---------------------------------------------------------------------------------------- - -% \begin{block}{RIP property} - -% %The Restricted Isometry Property (RIP) characterizes a quasi-orthonormality of the measurement matrix M on sparse vectors. - -% For all k, we define $\delta_k$ as the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$ - -% \begin{equation} -% 1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k -% \end{equation} - -% In general, the smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$! - -% \end{block} - -%---------------------------------------------------------------------------------------- - -\end{column} - -\begin{column}{\sepwid}\end{column} % Empty spacer column - -\begin{column}{\onecolwid} % The first column within column 2 (column 2.1) - - -%---------------------------------------------------------------------------------------- - - -\begin{block}{Algorithms} - -{\bf Voter Model} - -\begin{itemize} -\item Solve for each node i: -\begin{equation} -\min_{\vec x_i} \|\vec x_i\|_1 + \lambda \|M \vec x_i - \vec b_i \|_2 \nonumber -\end{equation} -\end{itemize} - -{\bf Independent Cascade Model} - -\begin{itemize} -\item Solve for each node i: -\begin{equation} -\min_{\vec \theta_i} \|\vec \theta_i\|_1 + \lambda \|e^{M \vec \theta_i} - (1 - \vec b_i) \|_2 \nonumber -\end{equation} -\end{itemize} - -\end{block} - -\begin{block}{Restricted Isometry Property (RIP)} -{\bf Definition} -\begin{itemize} -\item Characterizes a quasi-orthonormality of M on sparse vectors. - -\item The RIP constant $\delta_k$ is the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$: - -\begin{equation} -1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k \nonumber -\end{equation} - -\item The smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$. -\end{itemize} - - - - -\end{block} - -\begin{block}{Theoretical Guarantees} - -With small RIP constants $(\delta \leq 0.25)$ for $M$ and some assumption on the noise $\epsilon$: - -{\bf Theorem \cite{candes}} - -If node $i$ has degree $\Delta$ and $n_{\text{rows}}(M) \geq C_1 \mu \Delta \log n$, then, w.h.p., - -$$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{n_{\text{rows}}(M) }}$$ - - -\end{block} - - - - -%---------------------------------------------------------------------------------------- -% RESULTS -%---------------------------------------------------------------------------------------- - -\begin{block}{RIP Experiments} - -\begin{center} -\begin{table} -\begin{tabular}{c | c | c | c | c } -& $c$ = 100, &$c$ = 1000,& $c$ = 100, &$c$ = 1000,\\ -& $i$ = 0.1& $i$ = 0.1& $i$ = 0.05& $i$ = 0.05\\ - \hline - $\delta_4$ & 0.54 & 0.37 &0.43&0.23 \\ - \end{tabular} - \caption{RIP constant for a small graph. Here, $c$ is the number of cascades and $i$ is $p_{\text{init}}$.} -\end{table} -\end{center} - - -\end{block} - -%---------------------------------------------------------------------------------------- - - -\end{column} % End of the second column - -\begin{column}{\sepwid}\end{column} % Empty spacer column - -\begin{column}{\onecolwid} % The third column - -%---------------------------------------------------------------------------------------- -% IOVERALL COMPARISON -%---------------------------------------------------------------------------------------- - -%\vspace{- 14.2 cm} -%\begin{center} -%{\includegraphics[height=7em]{cmu_logo.png}} % First university/lab logo on the left -%\end{center} - -%\vspace{4 cm} - -\begin{alertblock}{Experimental Results} - - - - -\end{alertblock} - -%---------------------------------------------------------------------------------------- - - -%---------------------------------------------------------------------------------------- -% CONCLUSION -%---------------------------------------------------------------------------------------- - -\begin{block}{Conclusion} - -\begin{center} - - -{\bf Graph reconstruction can naturally be expressed as Sparse Recovery. Understanding properties of $M$, for example RIP, leads to theoretical guarantees on the reconstruction.} - -\end{center} - -\end{block} - -%---------------------------------------------------------------------------------------- -% REFERENCES -%---------------------------------------------------------------------------------------- - -\begin{block}{References} - -\begin{thebibliography}{42} - -\bibitem{candes} -Candès, E., and Plan, Y. -\newblock {\it A Probabilistic and RIPless Theory of Compressed Sensing} -\newblock Information Theory, IEEE Transactions on, 57(11): 7235--7254, -\newblock 2011. -\end{thebibliography} - -\end{block} - -%---------------------------------------------------------------------------------------- - -\end{column} % End of the third column - -\end{columns} % End of all the columns in the poster - -\end{frame} % End of the enclosing frame - - - -\end{document} |
