diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-08 17:51:25 +0100 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-08 17:51:25 +0100 |
| commit | 91287ed4ec2157f1318074c7aa24786d7bcef3a9 (patch) | |
| tree | 84e162b591f3010561f393f52db45bfe0f5f808c /notes/maximum_likelihood_approach.tex | |
| parent | ed0b64814bcfdf94e8b85a148d76318d98f68b9b (diff) | |
| download | cascades-91287ed4ec2157f1318074c7aa24786d7bcef3a9.tar.gz | |
adding maximum likelihood approach write-up
Diffstat (limited to 'notes/maximum_likelihood_approach.tex')
| -rw-r--r-- | notes/maximum_likelihood_approach.tex | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/notes/maximum_likelihood_approach.tex b/notes/maximum_likelihood_approach.tex new file mode 100644 index 0000000..acc196b --- /dev/null +++ b/notes/maximum_likelihood_approach.tex @@ -0,0 +1,153 @@ +\documentclass[11pt]{article} +\usepackage{fullpage, amsmath, amssymb, amsthm} +\newtheorem{theorem}{Theorem} +\newtheorem{lemma}{Lemma} +\newtheorem{remark}{Remark} +\newtheorem{proposition}{Proposition} + +\title{Maximum Likelihood Approach} +\author{Jean Pouget-Abadie} + +\begin{document} + +\maketitle + +We consider the node $\alpha$. We index the measurements by $i \in [1, n]$. Let $b^i$ be the indicator variable for node $\alpha$ active at the round following measurememt $i$ and let $x^i$ be the vector of active nodes for measurement $i$. Recall that: + +\begin{equation} +\label{eq:probability_of_infection} +1 - \exp(\langle x^i, \theta \rangle) = \mathbb{P}(\text{node } \alpha \text{ is active at the following round}) +\end{equation} + +The likelihood problem can be formulated as such: + +\begin{equation} +\label{eq:main_formulation} +\min_{\theta \in \mathbb{R}^p} \quad \lambda_n \| \theta \|_1 + \sum^n_{i=1} - b^i \log \left(e^{-\langle x^i, \theta \rangle} - 1 \right) - \langle x^i, \theta \rangle +\end{equation} + +We define $f(\theta):= \sum^n_{i=1} - b^i \log \left(\exp(-\langle x^i, \theta \rangle) \right) - \langle x^i, \theta \rangle$ such that Eq.~\ref{eq:main_formulation} can be rewritten as: + +\begin{equation} +\label{eq:small_formulation} +\min_{\theta \in \mathbb{R}^p} \quad f(\theta) + \lambda_n \| \theta \|_1 +\end{equation} + +We cite the following theorem from \cite{Negahban:2009} (roughly, because the statements of the theorem are either slightly wrong or unclear): + +\begin{proposition} +\label{thm:cited_theorem} +Let ${\cal C}:=\{\Delta \in \mathbb{R}^p : \exists S \subset [1, n] \ s.t. \ \|\Delta_{S^c}\|_1 \leq 3 \| \Delta_S \|_1 \}$. Suppose that $\theta^*$ is s-sparse, and the following two conditions are met: +\begin{equation} +\lambda_n \geq 2 \|\nabla f(\theta^*) \|_\infty +\label{eq:lambda_condition} +\end{equation} +\begin{equation} +\forall \Delta \in {\cal C}, \ \Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta \geq \gamma_n \| \Delta \|_2^2 +\label{eq:RSC_condition} +\end{equation} +then: +\begin{equation} +\| \theta - \theta^* \|_2 \leq \frac{\sqrt{s} \lambda_n}{\gamma_n} +\end{equation} +\end{proposition} + +It remains to show the two conditions for Proposition~\ref{thm:cited_theorem} are met. + +\section*{Condition~\ref{eq:lambda_condition}} +Condition~\ref{eq:lambda_condition} requires us to find an upper-bound for $ 2 \|\nabla f(\theta^*) \|_\infty$. If we only consider the first measurement of every cascade, this can be done easily. Let $N$ be the number of cascades (to distinguish from $n$ number of total measurements). Begin by noting that: + +\begin{equation} +\nabla_k f(\theta) = \sum^n_{i=1} \frac{b^i x^i_k}{1 - e^{\langle x^i, \theta \rangle}} - \sum^n_{i=1} x^i_k = \sum_{i=1}^n x^k_i \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) +\end{equation} + +\begin{lemma} +\label{lem:subgaussian_variable} +$\nabla f(\theta^*)$ is a $N/p_{\min}$-subgaussian variable, where $p_{\min}$ is the smallest non-zero link to node $\alpha$. +\end{lemma} + +\begin{proof} +\begin{align} +\mathbb{E} \left( \nabla_k f(\theta) \right) & = \sum_{i=1}^N \mathbb{E} \left[ x^i_k \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \right] \nonumber \\ +& = \sum_{i=1}^N \mathbb{E}_S \left[ \mathbb{E}\left[x^i_k \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \middle| S \right] \right] \quad \text{where S is the seed set} \nonumber \\ +& = \sum_{i=1}^N \mathbb{E}\left[x^i_k \left( \frac{ \mathbb{E}_S \left[ b^i \middle| S \right]}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \right] \nonumber \\ +& = 0 +\end{align} +Therefore, $\nabla f(\theta^*)$ is the sum of zero-mean variables, upper-bounded by $1/p_{\min}$. It follows that $\nabla f(\theta^*)$ is $N/p_{\min}$-subgaussian. +\end{proof} + +By union bound and characterization of sub-gaussian variables: + +\begin{equation} +\mathbb{P}(\| \nabla f(\theta) \|_{\infty} > \lambda) \leq 2 \exp \left( -\frac{\lambda^2 p_{\min}}{2n} + \log p \right) +\end{equation} + +In conclusion, for $\delta>0$, $\lambda := 2 \sqrt{\frac{n^{\delta + 1} \log p}{p_{\min}}}$ meets Condition~\ref{eq:lambda_condition} with probability $1 - \exp(-n^\delta \log p )$ + + +\section*{Condition~\ref{eq:RSC_condition}} + +Finally, note that: +\begin{equation} +\nabla_{kj} f(\theta) = \sum_{i=1}^n \frac{b^i x_k^i x_j^i e^{\langle x^i, \theta \rangle}}{\left(1 - e^{\langle x^i, \theta \rangle} \right)^2} = \sum_{i=1}^n b^i x_k^i x_j^i \frac{\mathbb{P}(\text{node } \alpha \text { not infected})}{\mathbb{P}(\text{node } \alpha \text { infected})^2} +\end{equation} + +\subsection*{First term} +We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in {\cal C}, \Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta \geq \gamma n \|\Delta\|_2^2$. If we denote $p_i := \mathbb{P}(\text{node } \alpha \text { infected})$, we have: +\begin{equation} +\Delta^T \cdot \nabla^2 f(\theta^*) \cdot \Delta = \sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] + 2 \sum_{k< j} \Delta_k \Delta_j \left[ \sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}\right] +\end{equation} + +We are first going to find a lower-bound for $\sum_i b^i x_k^i \frac{1 - p_i}{p_i^2}$ by computing a lower-bound on its expectation and concluding with Hoeffding's inequality. If we only consider the first measurement of every cascade and we further suppose that $p_i < 1 - \eta$ no matter the configuration of active nodes (slightly less strong than correlation decay). + +\begin{align} +\mathbb{E}\left(\sum_i b^i x_k^i \frac{1 - p_i} {p_i}^2 \right) & = \sum_i \mathbb{E} \left(x_k^i \frac{1 - p_i} {p_i}^2 \right) \nonumber \\ +& = \sum_i \mathbb{P}(b^i =1 | x_k^i =1) \mathbb{P}(x^i_k =1) \mathbb{E}\left(\frac{1 - p_i}{p_i^2} \middle| b^i =1 = x_k^i \right) \nonumber \\ +& = ATTENTION IL Y A ERREUR A LA LIGNE SUIVANTE: \\ +& \geq \min \left(1 , 1 - (1 - p_{init})^s \right)\cdot p_{init} \cdot \frac{\eta}{(1 - \eta)^2} \nonumber \\ +& \geq s p_{init}^2 \frac{\eta}{(1 - \eta)^2} \quad \text{si }s < \frac{1}{p_{init}} \nonumber \\ +& \geq p_{init} \frac{\eta}{(1 - \eta)^2} \quad \text{si }s > \frac{1}{p_{init}} \nonumber +\end{align} + +We can conclude using the following Hoeffding inequality for independent random variables bounded by $[0, b_i]$ by noticing that our variables are bounded by above by $\frac{1 - p_{\min}}{p_{\min}^2}$ + +\paragraph{Hoeffding's inequality} +\begin{equation} +\label{eq:hoeffding_inequality} +\mathbb{P} \left(\sum Z_i \geq \mathbb{E}[\sum Z_i] - t \right) \leq \exp\left(- \frac{2 N t^2}{b^2} \right) +\end{equation} + +It follows that for $c<1$ with probability $1 - \exp \left( - n^3 c^2 s^2 p_{init}^4 p_{\min}^4 \frac{\eta^2}{(1 - \eta)^4} \right)$, we have that $$\sum_k \Delta_k^2 \left[ \sum_i b^i x_k^i \frac{1 - p_i}{p_i^2} \right] \geq \gamma N =: (1 -c) s p_{init}^2 \frac{\eta}{(1 - \eta)^2} N$$ + +\begin{remark} +Would it be possible to extend this result using Azuma's inequality on Martingales to not just the first measurement of every cascade? +\end{remark} + +\subsection*{Second term} +We are now going to find an upper-bound on the term $\sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}$. + +\section*{Conclusion} + +Suppose we show that Condition~\ref{eq:RSC_condition} is met for $\gamma_n = \gamma N$, then we have the following theorems: + +\begin{theorem} +\label{thm:l2_bound} +Suppose that $\theta^* \in \mathbb{R}^p$ is s-sparse and that we choose $\lambda_n = 2 \sqrt{\frac{n^{\delta + 1} \log p}{p_{\min}}}$ for $\delta >0$, then with probability $1 - \exp(-n^\delta \log p )$, we have +\begin{equation} +\|\hat \theta - \theta^* \|_2 \leq \frac{2}{\gamma} \sqrt{\frac{s \log p}{p_{\min} N^{1 - \delta}}} +\end{equation} +\end{theorem} + +Note that we can choose $\delta = 0$ in high-dimensions since the probability of success will then be $1 - \frac{1}{p} \approx 1$. We can also conclude on support recovery with the following reasoning. + +\begin{theorem} +\label{thm:support_recovery} +Suppose that $N$ is chosen such that $\frac{2}{\gamma}\sqrt{\frac{s \log p}{p_{\min} N^{1 -\delta}}} < \eta$ and suppose we only keep as elements of the support of $\theta^*$ the coordinates $\hat \theta_i > \eta$. Then no wrong parent will be included, and all `strong' parents will be included, where `strong' signifies: $\theta^*_i > 2 \eta$. +\end{theorem} + +It follows that we have found an ${\cal O}(s \log p)$ algorithm for recovering the graph, with better constants and fewer assumptions than any previous work. + +\bibliography{sparse} +\bibliographystyle{plain} + +\end{document}
\ No newline at end of file |
