diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-27 10:09:50 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-27 10:09:50 -0500 |
| commit | da4efddb21fc7fc9c92e9ea54c4421268697d829 (patch) | |
| tree | 5d51d5618f7181d850f907c8d8315d4f9ddacf74 /notes/sparse.bib | |
| parent | 7265b4b5ff05ec64b88ec8698724dfd5b235f29f (diff) | |
| download | cascades-da4efddb21fc7fc9c92e9ea54c4421268697d829.tar.gz | |
small changes
Diffstat (limited to 'notes/sparse.bib')
| -rw-r--r-- | notes/sparse.bib | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/notes/sparse.bib b/notes/sparse.bib index 62c6c0f..969e45d 100644 --- a/notes/sparse.bib +++ b/notes/sparse.bib @@ -53,6 +53,40 @@ year = {2006}, pages = {538--557}, } +@article{Zhao:2006, + author = {Zhao, Peng and Yu, Bin}, + title = {On Model Selection Consistency of Lasso}, + journal = {J. Mach. Learn. Res.}, + issue_date = {12/1/2006}, + volume = {7}, + month = dec, + year = {2006}, + issn = {1532-4435}, + pages = {2541--2563}, + numpages = {23}, + url = {http://dl.acm.org/citation.cfm?id=1248547.1248637}, + acmid = {1248637}, + publisher = {JMLR.org}, +} + +@inproceedings{Daneshmand:2014, + author = {Hadi Daneshmand and + Manuel Gomez{-}Rodriguez and + Le Song and + Bernhard Sch{\"{o}}lkopf}, + title = {Estimating Diffusion Network Structures: Recovery Conditions, Sample + Complexity {\&} Soft-thresholding Algorithm}, + booktitle = {Proceedings of the 31th International Conference on Machine Learning, + {ICML} 2014, Beijing, China, 21-26 June 2014}, + pages = {793--801}, + year = {2014}, + crossref = {DBLP:conf/icml/2014}, + url = {http://jmlr.org/proceedings/papers/v32/daneshmand14.html}, + timestamp = {Fri, 07 Nov 2014 20:42:30 +0100}, + biburl = {http://dblp.uni-trier.de/rec/bib/conf/icml/DaneshmandGSS14}, + bibsource = {dblp computer science bibliography, http://dblp.org} +} + \bibitem{abrahao} Abrahao, B., Chierichetti, F., Kleinberg, R., and Panconesi, A. \newblock{\it Trace Complexity of Network Inference} |
