diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-07 11:39:42 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2014-12-07 11:39:42 -0500 |
| commit | 2f3af262c148af5fb5efbeacd4a85ad62efea6be (patch) | |
| tree | bee9639faaab3855d462bb8339d9bbe1966c91c0 /notes | |
| parent | e5a895cb2dbae9f177108c48baa5abca409dab6b (diff) | |
| download | cascades-2f3af262c148af5fb5efbeacd4a85ad62efea6be.tar.gz | |
Updating poster
Diffstat (limited to 'notes')
| -rw-r--r-- | notes/cracking_cascades_classposter.tex | 239 |
1 files changed, 125 insertions, 114 deletions
diff --git a/notes/cracking_cascades_classposter.tex b/notes/cracking_cascades_classposter.tex index 2b29109..52fd78d 100644 --- a/notes/cracking_cascades_classposter.tex +++ b/notes/cracking_cascades_classposter.tex @@ -75,25 +75,30 @@ %\vspace{4.6 cm} -\begin{block}{Introduction} +\begin{block}{Problem Statement} +\begin{center} +\bf{How can we reconstruct a graph on which observed cascades spread?} +\end{center} +\end{block} -{\bf Graph Reconstruction}: -\begin{itemize} -\item \{${\cal G}, \vec p$\}: directed graph, edge probabilities -\item $F$: cascade generating model -\item ${\cal M} := F\{{\cal G}, \vec p\}$: cascade -\end{itemize} +%{\bf Graph Reconstruction}: -{\bf Objective}: -\begin{itemize} -\item Find algorithm which computes $F^{-1}({\cal M}) = \{{\cal G}, \vec p\}$ w.h.p., i.e. recovers graph from cascades. -\end{itemize} +%\begin{itemize} +%\item \{${\cal G}, \vec p$\}: directed graph, edge probabilities +%\item $F$: cascade generating model +%\item ${\cal M} := F\{{\cal G}, \vec p\}$: cascade +%\end{itemize} -{\bf Approach} -\begin{itemize} -\item Frame graph reconstruction as a {\it Sparse Recovery} problem for two cascade generating models. -\end{itemize} +%{\bf Objective}: +%\begin{itemize} +%\item Find algorithm which computes $F^{-1}({\cal M}) = \{{\cal G}, \vec p\}$ w.h.p., i.e. recovers graph from cascades. +%\end{itemize} + +%{\bf Approach} +%\begin{itemize} +%\item Frame graph reconstruction as a {\it Sparse Recovery} problem for two cascade generating models. +%\end{itemize} %Given a set of observed cascades, the \textbf{graph reconstruction problem} consists of finding the underlying graph on which these cascades spread. We assume that these cascades come from the classical \textbf{Independent Cascade Model} where at each time step, newly infected nodes infect each of their neighbor with some probability. @@ -101,47 +106,65 @@ %We formulate a novel approach to this problem in which we use \textbf{Sparse Recovery} to find the edges in the unknown underlying network. Sparse Recovery is the problem of finding the sparsest vector $x$ such that $\mathbf{M x =b}$. In our case, for each node $i$, we wish to recover the vector $x = p_i$ where $p_{i_j}$ is the probability that node $j$ infects node $i$ if $j$ is active. To recover this vector, we are given $M$, where row $M_{t,k}$ indicates which nodes are infected at time $t$ in observed cascade $k$, and $b$, where $b_{t+1,k}$ indicates if node $i$ is infected at time $t+1$ in cascade $k$. Since most nodes have a small number of neighbors in large networks, we can assume that these vectors are sparse. Sparse Recovery is a well studied problem which can be solved efficiently and with small error if $M$ satisfies certain properties. In this project, we empirically study to what extent $M$ satisfies the Restricted Isometry Property. -\end{block} %--------------------------------------------------------------------------------- %--------------------------------------------------------------------------------- \begin{block}{Voter Model} + +\begin{figure} +\centering +\includegraphics[width=0.6\textwidth]{voter.png} +\end{figure} + + + +\vspace{0.5 cm} {\bf Description} +\vspace{0.5 cm} + \begin{itemize} \item Two types of nodes, {\color{red} red} and {\color{blue} blue}. \item $\mathbb{P}$(node is {\color{blue} blue} at $t=0) = p_{\text{init}}$ \item $\mathbb{P}$(node is {\color{blue} blue} at t+1) = $\frac{\text{Number of {\color{blue}blue} neighbors}}{\text{Total number of neighbors}}$ -\item Observe until horizon T \end{itemize} +\vspace{0.5 cm} + {\bf Sparse Recovery Formulation} -\begin{itemize} -\item Definitions: -\end{itemize} -\begin{align} -(\vec m^t_k)_j &:= \left[\text{node j is {\color{blue} blue} at t in cascade k}\right] \nonumber \\ -(\vec x_{i})_j &:= \frac{\text{1}}{\text{deg}(i)} \cdot \left[\text{j parent of i in }{\cal G}\right] \nonumber \\ -b^t_{k,i} &:= \text{node i is {\color{blue} blue} at t+1 in cascade k} \nonumber -\end{align} -\begin{itemize} -\item Observation: -\end{itemize} -\begin{align} -\langle \vec m^t_k, \vec x_i \rangle &= \mathbb{P}(\text{node i is {\color{blue} blue} at t+1 in cascade k}) \nonumber \\ -&=: w^{t+1}_{k,i} \nonumber -\end{align} +\vspace{0.5 cm} + + +To recover the neighbors of $v_1$: + +Observe which nodes are {\color{red} red} (1) or {\color{blue} blue} (0) in the two first iterations: +\begin{align*} +&v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \hspace{0.2 cm} v_5 \\ +\vspace{1 cm} +M = & \left( \begin{array}{cccc} +0 & 0 & 1 & 1 \\ +1 & 1 & 0 & 0 \\ +\end{array} \right) +\end{align*} + +and which color $v_1$ is in the two last iterations: + +\begin{align*} +b_1 = & \left( \begin{array}{c} +1 \\ +1 \\ +\end{array} \right) +\end{align*} + +If $(\vec x_{1})_j := \frac{\text{1}}{\text{deg}(i)} \cdot \left[\text{j parent of 1 in }{\cal G}\right] $, then our goal is to solve: -\begin{itemize} -\item We observe $M := \text{vstack}(\vec m^t_k)$ -\item We observe $b_i := \text{vstack}(b^t_{k,i})$ where $$b^t_{k,i} \sim {\cal B}(w^t_{k,i}) = w^t_{k,i} - \epsilon$$ -\item For each node i, solve for $\vec x_i$: \begin{equation} -\boxed{M \vec x_i = \vec b_i + \epsilon \nonumber} +\boxed{M \vec x_1 = \vec b_1 + \epsilon \nonumber} \end{equation} -\end{itemize} + +This problem is a {\bf Noisy Sparse Recovery} problem, which has been studied extensively. Here, the vectors $\vec x_i$ are deg(i)-sparse. \end{block} @@ -155,37 +178,6 @@ b^t_{k,i} &:= \text{node i is {\color{blue} blue} at t+1 in cascade k} \nonumber %--------------------------------------------------------------------------------- %--------------------------------------------------------------------------------- -\begin{block}{Independent Cascade Model} - -{\bf Description} -\begin{itemize} -\item Three possible states: susceptible, infected, inactive -\item Infected node $j$ infects its susceptible neighbors $i$ with probability $p_{j,i}$ independently -\item $\mathbb{P}$(inactive at t+1| infected at t) = 1 -\item $\mathbb{P}$(infected at t=0)$=p_{\text{init}}$ -\end{itemize} - - -{\bf Sparse Recovery Formulation} -\begin{itemize} - -\item Definitions: -\begin{align} -(\vec \theta_i)_j &:= \log ( 1 - p_{j,i}) \nonumber \\ -(\vec m^t_k)_j &= \left[\text{node j is infected at t in cascade k}\right] \nonumber -\end{align} - -\item Observation: -\begin{equation} -\langle \vec m^t_k, \vec x_i \rangle = \log \mathbb{P}(\text{node i {\it not} infect. at t+1 in casc. k}) \nonumber -\end{equation} -\item With same notations, we solve for each node i: -\begin{equation} -\boxed{e^{M \vec \theta_i} = (1 - \vec b_i) + \epsilon} \nonumber -\end{equation} -where: $e^{M \vec \theta_i}$ is taken element-wise -\end{itemize} -\end{block} @@ -205,34 +197,60 @@ where: $e^{M \vec \theta_i}$ is taken element-wise %---------------------------------------------------------------------------------------- % CONSTRAINT SATISFACTION - BACKTRACKING %---------------------------------------------------------------------------------------- -\begin{block}{Example} - +\begin{block}{Independent Cascades Model} \begin{figure} \centering -\includegraphics[width=0.6\textwidth]{cascades.png} -\caption{Two cascades with two time steps each. Red nodes are the infected and active nodes.} +\includegraphics[width=0.6\textwidth]{icc.png} \end{figure} -Figure 1 illustrates two cascades. In this case, if we wish to recover $p_A$, then our problem would be is given by the formula -\[ \left( \begin{array}{cccc} +{\bf Description} + + + +\begin{itemize} +\item Three possible states: susceptible {\color{blue} blue}, infected {\color{red} red}, inactive {\color{yellow} yellow} +\item $\mathbb{P}$(infected at t=0)$=p_{\text{init}}$ +\item Infected node $j$ infects its susceptible neighbors $i$ with probability $p_{j,i}$ independently +\end{itemize} + + +{\bf Sparse Recovery Formulation} + +To recover the neighbors of $v_5$: + +Observe which nodes are {\color{red} red} (1), {\color{blue} blue} (0), or yellow {\color{yellow} yellow} (0) in the two first iterations: +\begin{align*} +&v_1 \hspace{0.2 cm} v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \\ +\vspace{1 cm} +M = & \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ -0 & 1 & 0 & 0 \\ -\end{array} \right) x_A = \left( \begin{array}{c} +0 & 1 & 1 & 0 \\ +\end{array} \right) +\end{align*} + +and if $v_5$ is infected in the two last iterations: + +\begin{align*} +b_1 = & \left( \begin{array}{c} 0 \\ -1 \\\end{array} \right)\] +1 \\ +\end{array} \right) +\end{align*} + +If $(\vec \theta_i)_j := \log ( 1 - p_{j,i}) $, then our goal is to solve: + +\begin{equation} +\boxed{e^{M \vec \theta_i} = (1 - \vec b_i) + \epsilon} \nonumber +\end{equation} + + + \end{block} %---------------------------------------------------------------------------------------- -\begin{block}{Motivation} -\begin{itemize} -\item Vectors $\vec x_i$ are deg(i)-sparse. -\item Matrix $M$ is well-conditioned (see experimental section) -\item Voter model: quasi-textbook noisy sparse recovery -\item Independent cascade: if $p_{j,i} < 1 - \eta$, exponential can be approximated by affine function -\end{itemize} -\end{block} + \begin{block}{Algorithms} @@ -252,7 +270,6 @@ Figure 1 illustrates two cascades. In this case, if we wish to recover $p_A$, th \begin{equation} \min_{\vec \theta_i} \|\vec \theta_i\|_1 + \lambda \|e^{M \vec \theta_i} - \vec b_i \|_2 \nonumber \end{equation} -where: $e^{M \vec \theta_i}$ is taken element-wise \end{itemize} \end{block} @@ -291,35 +308,9 @@ where: $e^{M \vec \theta_i}$ is taken element-wise %---------------------------------------------------------------------------------------- -\begin{block}{Theoretical Guarantees} -{\bf Assumptions} -\begin{itemize} -\item Suppose that each row of $M$ is taken from a distribution $F$, such that -\begin{itemize} - \item $\mathbb{E}_{a \in F}(a a^T) = I_n$ - \item $\|a\|_{\infty} \leq \mu$ -\end{itemize} -\item Suppose that w.h.p $\| M^T \epsilon \|_{\infty} \leq 2.5 \sqrt{\log n} $ -\end{itemize} - -{\bf Theorem \cite{candes}} - -If node $i$ has degree $\Delta$ and $n_{\text{rows}}(M) \geq C \mu \Delta \log n$, then, w.h.p., - -$$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{m}}$$ - -{\bf Discussion} - -\begin{itemize} -\item If we consider $M/p_{init}$, then $\mathbb{E}_{a \in F}(a a^T) \approx I_n$ -\item $\mathbb{E}(\epsilon) = 0$, hence $\| M^T \epsilon \|_{\infty} \leq 2.5 \sqrt{\log n}$ should hold w.h.p -\end{itemize} - -\end{block} - -\begin{block}{Restriced Isometry Property (RIP)} +\begin{block}{Restricted Isometry Property (RIP)} {\bf Definition} \begin{itemize} \item The Restricted Isometry Property (RIP) characterizes a quasi-orthonormality of the measurement matrix M on sparse vectors. @@ -343,6 +334,20 @@ $$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{m}}$ \end{block} +\begin{block}{Theoretical Guarantees} + +In the case of small RIP constants $(\delta \leq 0.25)$ for $M$ and some assumption on the noise $\epsilon$: + +{\bf Theorem \cite{candes}} + +If node $i$ has degree $\Delta$ and $n_{\text{rows}}(M) \geq C_1 \mu \Delta \log n$, then, w.h.p., + +$$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{m}}$$ + + +\end{block} + + %---------------------------------------------------------------------------------------- @@ -351,6 +356,12 @@ $$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{m}}$ \begin{block}{Description of Experiments} +\begin{tabular}{ c | c | c | c | c } +& c = 100, &c = 1000,&c = 100, &c = 1000,\\ +& i = 0.1&i = 0.1& i = 0.05& i = 0.05\\ + \hline + $\delta_4$ & 0.54 & 0.37 &0.43&0.23 \\ +\end{tabular} \end{block} |
