diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-14 07:49:27 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-14 07:49:27 -0500 |
| commit | b5462b8e1eb3ae8ddc3008e26bc910954a6840cb (patch) | |
| tree | 962f809f6c161a231398549eaca349d2aaa31ef7 /notes | |
| parent | bb4b6a3d52867600d003ca677ba37e0be1cce53c (diff) | |
| download | cascades-b5462b8e1eb3ae8ddc3008e26bc910954a6840cb.tar.gz | |
fixing small bug
Diffstat (limited to 'notes')
| -rw-r--r-- | notes/maximum_likelihood_approach.tex | 5 |
1 files changed, 4 insertions, 1 deletions
diff --git a/notes/maximum_likelihood_approach.tex b/notes/maximum_likelihood_approach.tex index 18586e8..c145b0c 100644 --- a/notes/maximum_likelihood_approach.tex +++ b/notes/maximum_likelihood_approach.tex @@ -1,5 +1,6 @@ \documentclass[11pt]{article} \usepackage{fullpage, amsmath, amssymb, amsthm} +\usepackage{color} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{remark}{Remark} @@ -109,6 +110,8 @@ We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in { Suppose that $\forall k$, $\mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] \geq 1 + \alpha$, then with probability greater than $1 - 2 p e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N}$, $$\forall k, \ Z_k > c \alpha p_{\text{init}} N$$ \end{lemma} +{\color{red} The following is not exactly correct!} Since the expectation must be taken conditioned on the probability that at least one parent is active such that $p_i$ is not 0! This does change things. + \begin{proof} Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active. \begin{align} @@ -151,7 +154,7 @@ We conclude by union bound. \end{proof} \begin{proposition} -Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := p_{\text{init}}(\alpha - \beta p_{\text{init}})$ +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := p_{\text{init}}(\alpha - 16 \sqrt{s} \beta p_{\text{init}})$ \end{proposition} |
