diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2014-11-23 11:19:36 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2014-11-23 11:19:36 -0500 |
| commit | c39e48798659133abcb9bfe7b7c407b940b73c1a (patch) | |
| tree | 4c3adcec53ef103752559059f18b0d2716f8b3bf /notes | |
| parent | 0f3c28b41f47326fac78897d770eabf64ceb6c98 (diff) | |
| download | cascades-c39e48798659133abcb9bfe7b7c407b940b73c1a.tar.gz | |
Re-add formulation of the ML problem
Diffstat (limited to 'notes')
| -rw-r--r-- | notes/formalisation.tex | 25 |
1 files changed, 25 insertions, 0 deletions
diff --git a/notes/formalisation.tex b/notes/formalisation.tex index bdd6aab..00eb891 100644 --- a/notes/formalisation.tex +++ b/notes/formalisation.tex @@ -154,6 +154,31 @@ $$\vec w\sim B(1 - e^{M \theta_{*,i}})$$ where the operation $f: \vec v \rightarrow 1 - e^{\vec v}$ is done element-wise and $B(\vec p)$ is a vector whose entries are bernoulli variables of parameter the entries of $\vec p$. +\subsection{Maximum likelihood problem} + +The maximum likelihood problem takes the following form: +\begin{displaymath} + \begin{split} + \max_\theta &\sum_{k,t}\left(b_{k,t}\log\left(1-\exp\inprod{A_k^t, \theta}\right) + + (1-b_{k,t})\log\exp\inprod{A_k^t,\theta}\right)\\ + \text{s.t. }& \|\theta\|_1 \leq k + \end{split} +\end{displaymath} +which we can rewrite as: +\begin{displaymath} + \begin{split} + \max_\theta &\sum_{k,t}b_{k,t}\log\left(\exp\left(-\inprod{A_k^t, \theta}\right)-1\right) + + \sum_{k,t}\inprod{A_k^t,\theta}\\ + \text{s.t. }& \|\theta\|_1 \leq k + \end{split} +\end{displaymath} +In this form it is easy to see that this is a convex program: the objective +function is the sum of a linear function and a concave function. + +\paragraph{Questions} to check: is the program also convex in the $p_{j,i}$'s? +What is the theory of sparse recovery for maximum likelihood problems? (TO DO: +read about Bregman divergence, I think it could be related). + \subsection{Results under strong assumptions} What can we hope to have etc. (If M has full column rank or if same sets S occur frequently). |
