aboutsummaryrefslogtreecommitdiffstats
path: root/notes
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2014-11-23 11:19:36 -0500
committerThibaut Horel <thibaut.horel@gmail.com>2014-11-23 11:19:36 -0500
commitc39e48798659133abcb9bfe7b7c407b940b73c1a (patch)
tree4c3adcec53ef103752559059f18b0d2716f8b3bf /notes
parent0f3c28b41f47326fac78897d770eabf64ceb6c98 (diff)
downloadcascades-c39e48798659133abcb9bfe7b7c407b940b73c1a.tar.gz
Re-add formulation of the ML problem
Diffstat (limited to 'notes')
-rw-r--r--notes/formalisation.tex25
1 files changed, 25 insertions, 0 deletions
diff --git a/notes/formalisation.tex b/notes/formalisation.tex
index bdd6aab..00eb891 100644
--- a/notes/formalisation.tex
+++ b/notes/formalisation.tex
@@ -154,6 +154,31 @@ $$\vec w\sim B(1 - e^{M \theta_{*,i}})$$
where the operation $f: \vec v \rightarrow 1 - e^{\vec v}$ is done element-wise and $B(\vec p)$ is a vector whose entries are bernoulli variables of parameter the entries of $\vec p$.
+\subsection{Maximum likelihood problem}
+
+The maximum likelihood problem takes the following form:
+\begin{displaymath}
+ \begin{split}
+ \max_\theta &\sum_{k,t}\left(b_{k,t}\log\left(1-\exp\inprod{A_k^t, \theta}\right)
+ + (1-b_{k,t})\log\exp\inprod{A_k^t,\theta}\right)\\
+ \text{s.t. }& \|\theta\|_1 \leq k
+ \end{split}
+\end{displaymath}
+which we can rewrite as:
+\begin{displaymath}
+ \begin{split}
+ \max_\theta &\sum_{k,t}b_{k,t}\log\left(\exp\left(-\inprod{A_k^t, \theta}\right)-1\right)
+ + \sum_{k,t}\inprod{A_k^t,\theta}\\
+ \text{s.t. }& \|\theta\|_1 \leq k
+ \end{split}
+\end{displaymath}
+In this form it is easy to see that this is a convex program: the objective
+function is the sum of a linear function and a concave function.
+
+\paragraph{Questions} to check: is the program also convex in the $p_{j,i}$'s?
+What is the theory of sparse recovery for maximum likelihood problems? (TO DO:
+read about Bregman divergence, I think it could be related).
+
\subsection{Results under strong assumptions}
What can we hope to have etc. (If M has full column rank or if same sets S occur frequently).