diff options
| author | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-05-07 21:25:36 -0400 |
|---|---|---|
| committer | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-05-07 21:25:36 -0400 |
| commit | 4110319283b3b5b667d215bd44f23f8cd1a7cf46 (patch) | |
| tree | 87826e66df3e10ffbf427eb53c621b32f0ceb02d /paper/sections/appendix.tex | |
| parent | 16cee067526887f62dc725612d7f34730fddb447 (diff) | |
| download | cascades-4110319283b3b5b667d215bd44f23f8cd1a7cf46.tar.gz | |
broke something w/ references + changed RE paragraph
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex index afcf186..79baf2f 100644 --- a/paper/sections/appendix.tex +++ b/paper/sections/appendix.tex @@ -38,6 +38,42 @@ the proof. \subsubsection{Approximate sparsity proof} \subsubsection{RE with high probability} +\begin{proof}Writing $H\defeq \nabla^2\mathcal{L}(\theta^*)$, if + $ \forall\Delta\in C(S),\; + \|\E[H] - H]\|_\infty\leq \lambda $ + and $\E[H]$ verifies the $(S,\gamma)$-(RE) + condition then: + \begin{equation} + \label{eq:foo} + \forall \Delta\in C(S),\; + \Delta H\Delta \geq + \Delta \E[H]\Delta(1-32s\lambda/\gamma) + \end{equation} + Indeed, $ + |\Delta(H-E[H])\Delta| \leq 2\lambda \|\Delta\|_1^2\leq + 2\lambda(4\sqrt{s}\|\Delta_s\|_2)^2 + $. + Writing + $\partial^2_{i,j}\mathcal{L}(\theta^*)=\frac{1}{|\mathcal{T}|}\sum_{t\in + T}Y_t$ and using $(LF)$ and $(LF2)$ we have $\big|Y_t - \E[Y_t]\big|\leq + \frac{4(M+2)}{\alpha}$. + Applying Azuma's inequality as in the proof of Lemma~\ref{lem:ub}, this + implies: + \begin{displaymath} + \P\big[\|\E[H]-H\|_{\infty}\geq\lambda\big] \leq + 2\exp\left(-\frac{n\alpha\lambda^2}{4(M+2)} + 2\log m\right) + \end{displaymath} + Thus, if we take $\lambda=\sqrt{\frac{12(M+2)\log m}{\alpha + n^{1-\delta}}}$, $\|E[H]-H\|_{\infty}\leq\lambda$ w.p at least + $1-e^{-n^{\delta}\log m}$. When $n^{1-\delta}\geq + \frac{M+2}{21\gamma\alpha}s^2\log m$, \eqref{eq:foo} implies + $ + \forall \Delta\in C(S),\; + \Delta H\Delta \geq \frac{1}{2} \Delta \E[H]\Delta, + $ w.p. at least $1-e^{-n^{\delta}\log m}$ and the conclusion of + Proposition~\ref{prop:fi} follows. +\end{proof} + \subsection{Other continuous time processes binned to ours: proportional hazards model} |
