diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-29 09:50:23 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-29 09:50:23 -0500 |
| commit | a36c69aa005218ff7ebf6f7bb2ef3bd239b754f9 (patch) | |
| tree | fba75456e5bb9c3de73f290fac97ebad86177dd2 /paper/sections/appendix.tex | |
| parent | de7df38121cc8a39ee72899c9ed0628421dab7e1 (diff) | |
| download | cascades-a36c69aa005218ff7ebf6f7bb2ef3bd239b754f9.tar.gz | |
small changes
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex index 80692d0..65576bb 100644 --- a/paper/sections/appendix.tex +++ b/paper/sections/appendix.tex @@ -1,9 +1,9 @@ -\subsection*{Proof of support recovery lemma} +\subsection{Proof of support recovery lemma} -\subsection*{Upper-bound for $\|\nabla f(\theta^*)\|_\infty$} +\subsection{Upper-bound for $\|\nabla f(\theta^*)\|_\infty$} -We show an upper-bound for $ 2 \|\nabla f(\theta^*) \|_\infty$. If we only consider the first measurement of every cascade, this can be done easily. Let $N$ be the number of cascades (to distinguish from $n$ number of total measurements). Begin by noting that: +We show an upper-bound for $ 2 \|\nabla f(\theta^*) \|_\infty$. If we only consider the first measurement of every cascade, this can be done easily. Let $N$ be the number of cascades (to distinguish from $n$ number of total measurements). Begin by noting that for a node $\alpha$: \begin{align} \nabla_k f(\theta) & = \sum^n_{i=1} \frac{b^i x^i_k}{1 - e^{\langle x^i, \theta \rangle}} - \sum^n_{i=1} x^i_k \nonumber \\ @@ -19,7 +19,7 @@ $\nabla f(\theta^*)$ is a $N/p_{\min}$-subgaussian variable, where $p_{\min}$ is We show that its expectation is $0$ by conditioning on the seed set $S$: \begin{align} -\mathbb{E} \left( \nabla_k f(\theta) \right) & = \sum_{i=1}^N \mathbb{E} \left[ x^i_k \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \right] \nonumber \\ +\mathbb{E} \left( \nabla_k f(\theta) \right) & = \sum_{i=1}^N \mathbb{E} \left[ x^i_k \left( \frac{b^i}{\mathbb{P}(\alpha \text { infected})} - 1\right) \right] \nonumber \\ & = \sum_{i=1}^N \mathbb{E}_S \left[ \mathbb{E}\left[x^i_k \left( \frac{b^i}{\mathbb{P}(\alpha \text { infected})} - 1\right) \middle| S \right] \right] \nonumber \\ & = \sum_{i=1}^N \mathbb{E}\left[x^i_k \left( \frac{ \mathbb{E}_S \left[ b^i \middle| S \right]}{\mathbb{P}(\alpha \text { infected})} - 1\right) \right] \nonumber \\ & = 0 \nonumber @@ -30,7 +30,7 @@ Therefore, $\nabla f(\theta^*)$ is the sum of zero-mean variables, upper-bounded By union bound and characterization of sub-gaussian variables: \begin{equation} -\mathbb{P}(\| \nabla f(\theta) \|_{\infty} > \lambda) \leq 2 \exp \left( -\frac{\lambda^2 p_{\min}}{2n} + \log p \right) +\mathbb{P}(\| \nabla f(\theta) \|_{\infty} > \lambda) \leq 2 \exp \left( -\frac{\lambda^2 p_{\min}}{2n} + \log m \right) \end{equation} -In conclusion, for $\delta>0$, $\lambda := 2 \sqrt{\frac{n^{\delta + 1} \log p}{p_{\min}}}$ is a valid regularizer with probability $1 - \exp(-n^\delta \log p )$ +In conclusion, for $\delta>0$, $\lambda := 2 \sqrt{\frac{n^{\delta + 1} \log m}{p_{\min}}}$ is a valid regularizer with probability $1 - \exp(-n^\delta \log m )$ |
