diff options
| author | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-04-30 11:40:17 -0400 |
|---|---|---|
| committer | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-04-30 11:40:17 -0400 |
| commit | 13f312ce5b1201b70375d7cffebc813b25cb35fa (patch) | |
| tree | 7b0cbf1d1675d934ef30e098380b8baad0f1205d /paper/sections/results.tex | |
| parent | 7fd038c7b0f00f6db411e9c5037133fd09509a8d (diff) | |
| download | cascades-13f312ce5b1201b70375d7cffebc813b25cb35fa.tar.gz | |
added more comments from reviewers
Diffstat (limited to 'paper/sections/results.tex')
| -rw-r--r-- | paper/sections/results.tex | 91 |
1 files changed, 63 insertions, 28 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex index b156897..54fc587 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -92,6 +92,7 @@ $n$, which is different from the number of cascades. For example, in the case of the voter model with horizon time $T$ and for $N$ cascades, we can expect a number of measurements proportional to $N\times T$. +{\color{red} Move this to the model section} Before moving to the proof of Theorem~\ref{thm:main}, note that interpreting it in the case of the Independent Cascade Model requires one more step. Indeed, to cast it as a generalized linear cascade model, we had to perform the @@ -114,8 +115,7 @@ which gives a bound on the convergence rate of regularized estimators. We state their theorem in the context of $\ell_1$ regularization in Lemma~\ref{lem:negahban}. -\begin{lemma} - \label{lem:negahban} +\begin{lemma} \label{lem:negahban} Let ${\cal C}(S) \defeq \{ \Delta \in \mathbb{R}^m\,|\,\|\Delta_S\|_1 \leq 3 \|\Delta_{S^c}\|_1 \}$. Suppose that: \begin{multline} @@ -142,6 +142,8 @@ implied by the (RE)-condition.. The upper bound on the $\ell_{\infty}$ norm of $\nabla\mathcal{L}(\theta^*)$ is given by Lemma~\ref{lem:ub}. +{\color{red} explain usefulness/interpretation and contribution} +{\color{red} Sketch proof, full proof in appendix} \begin{lemma} \label{lem:ub} Assume {\bf(LF)} holds for some $\alpha>0$. For any $\delta\in(0,1)$: @@ -245,32 +247,35 @@ In other words, the closer $\theta^*$ is to being sparse, the smaller the price, and we recover the results of Section~\ref{sec:main_theorem} in the limit of exact sparsity. These results are formalized in the following theorem, which is also a consequence of Theorem 1 in \cite{Negahban:2009}. +{\color{red} Include full proof in appendix} \begin{theorem} \label{thm:approx_sparse} -Suppose the {\bf(RE)} assumption holds for the Hessian $\nabla^2 -f(\theta^*)$ and $\tau_{\mathcal{L}}(\theta^*) = \frac{\kappa_2\log m}{n}\|\theta^*\|_1$ -on the following set: +Suppose the {\bf(RE)} assumption holds for the Hessian $\nabla^2 f(\theta^*)$ +and $\tau_{\mathcal{L}}(\theta^*) = \frac{\kappa_2\log m}{n}\|\theta^*\|_1$ on +the following set: \begin{align} \nonumber {\cal C}' \defeq & \{X \in \mathbb{R}^p : \|X_{S^c}\|_1 \leq 3 \|X_S\|_1 + 4 \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_1 \} \\ \nonumber & \cap \{ \|X\|_1 \leq 1 \} \end{align} -If the number of measurements $n\geq \frac{64\kappa_2}{\gamma}s\log m$, then -by solving \eqref{eq:pre-mle} for $\lambda \defeq 2\sqrt{\frac{\log m}{\alpha n^{1 - \delta}}}$ we have: +If the number of measurements $n\geq \frac{64\kappa_2}{\gamma}s\log m$, then by +solving \eqref{eq:pre-mle} for $\lambda \defeq 2\sqrt{\frac{\log m}{\alpha n^{1 +- \delta}}}$ we have: \begin{align*} - \|\hat \theta - \theta^* \|_2 \leq - \frac{3}{\gamma} \sqrt{\frac{s\log m}{\alpha n^{1-\delta}}} - + 4 \sqrt[4]{\frac{s\log m}{\gamma^4\alpha n^{1-\delta}}} \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_1 + \|\hat \theta - \theta^* \|_2 \leq \frac{3}{\gamma} \sqrt{\frac{s\log + m}{\alpha n^{1-\delta}}} + 4 \sqrt[4]{\frac{s\log m}{\gamma^4\alpha + n^{1-\delta}}} \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_1 \end{align*} \end{theorem} -As before, edge recovery is a consequence of upper-bounding $\|\theta^* - \hat \theta\|_2$ +As before, edge recovery is a consequence of upper-bounding $\|\theta^* - \hat +\theta\|_2$ \begin{corollary} - Under the same assumptions as Theorem~\ref{thm:approx_sparse}, if the number of - measurements verifies: \begin{equation} + Under the same assumptions as Theorem~\ref{thm:approx_sparse}, if the number + of measurements verifies: \begin{equation} n > \frac{9}{\alpha\gamma^2\epsilon^2}\left(1+ \frac{16}{\epsilon^2}\| \theta^* - \theta^*_{\lfloor s\rfloor}\|_1\right)s\log m @@ -279,8 +284,6 @@ then similarly: ${\cal S}^*_{\eta + \epsilon} \subset \hat {\cal S}_\eta \subset {\cal S}^*$ w.p. at least $1-\frac{1}{m}$. \end{corollary} - - \subsection{Restricted Eigenvalue Condition} \label{sec:re} @@ -312,6 +315,10 @@ a re-weighted Gram matrix of the observations. In other words, the restricted eigenvalue condition sates that the observed set of active nodes are not too collinear with each other. +{\color{red} if the function is strictly log-convex, then equivalent -> explain +what the gram matrix is (explanation)} + +{\color{red} move to model section, small example} In the specific case of ``logistic cascades'' (when $f$ is the logistic function), the Hessian simplifies to $\nabla^2\mathcal{L}(\theta^*) = \frac{1}{|\mathcal{T}|}XX^T$ where $X$ is the observation matrix $[x^1 \ldots @@ -351,13 +358,14 @@ again non restrictive in the (IC) model and (V) model. \begin{proposition} \label{prop:fi} - Suppose $\E[\nabla^2\mathcal{L}(\theta^*)]$ verifies the $(S,\gamma)$-{\bf (RE)} - condition and assume {\bf (LF)} and {\bf (LF2)}. For $\delta> 0$, if $n^{1-\delta}\geq -\frac{M+2}{21\gamma\alpha}s^2\log m - $, then $\nabla^2\mathcal{L}(\theta^*)$ verifies the $(S,\frac{\gamma}{2})$-(RE) + Suppose $\E[\nabla^2\mathcal{L}(\theta^*)]$ verifies the $(S,\gamma)$-{\bf + (RE)} condition and assume {\bf (LF)} and {\bf (LF2)}. For $\delta> 0$, if + $n^{1-\delta}\geq \frac{M+2}{21\gamma\alpha}s^2\log m $, then + $\nabla^2\mathcal{L}(\theta^*)$ verifies the $(S,\frac{\gamma}{2})$-(RE) condition, w.p $\geq 1-e^{-n^\delta\log m}$. \end{proposition} +{\color{red} sketch proof, full (AND BETTER) proof in appendix} \begin{proof}Writing $H\defeq \nabla^2\mathcal{L}(\theta^*)$, if $ \forall\Delta\in C(S),\; \|\E[H] - H]\|_\infty\leq \lambda $ @@ -366,8 +374,8 @@ again non restrictive in the (IC) model and (V) model. \begin{equation} \label{eq:foo} \forall \Delta\in C(S),\; - \Delta H\Delta \geq - \Delta \E[H]\Delta(1-32s\lambda/\gamma) + \Delta H\Delta \geq + \Delta \E[H]\Delta(1-32s\lambda/\gamma) \end{equation} Indeed, $ |\Delta(H-E[H])\Delta| \leq 2\lambda \|\Delta\|_1^2\leq @@ -407,11 +415,16 @@ likelihood function also known as the {\it (S,s)-irrepresentability} condition. \begin{comment} \begin{definition} -Following similar notation, let $Q^* \defeq \nabla^2 f(\theta^*)$. Let $S$ and $S^c$ be the set of indices of all the parents and non-parents respectively and $Q_{S,S}$, $Q_{S^c,S}$, $Q_{S, S^c}$, and $Q_{S^c, S^c}$ the induced sub-matrices. Consider the following constant: +Following similar notation, let $Q^* \defeq \nabla^2 f(\theta^*)$. Let $S$ and +$S^c$ be the set of indices of all the parents and non-parents respectively and +$Q_{S,S}$, $Q_{S^c,S}$, $Q_{S, S^c}$, and $Q_{S^c, S^c}$ the induced +sub-matrices. Consider the following constant: \begin{equation} -\nu_{\text{irrepresentable}}(S) \defeq \max_{\tau \in \mathbb{R}^p \ :\ \| \tau \|_{\infty} \leq 1} \|Q_{S^c, S} Q_{S, S}^{-1} \tau\|_{\infty} +\nu_{\text{irrepresentable}}(S) \defeq \max_{\tau \in \mathbb{R}^p \ :\ \| \tau +\|_{\infty} \leq 1} \|Q_{S^c, S} Q_{S, S}^{-1} \tau\|_{\infty} \end{equation} -The (S,s)-irrepresentability holds if $\nu_{\text{irrepresentable}}(S) < 1 - \epsilon$ for $\epsilon > 0$ +The (S,s)-irrepresentability holds if $\nu_{\text{irrepresentable}}(S) < 1 - +\epsilon$ for $\epsilon > 0$ \end{definition} \end{comment} @@ -423,7 +436,11 @@ the {\bf(RE)} condition for $\ell_2$-recovery. \begin{comment} \begin{proposition} \label{prop:irrepresentability} -If the irrepresentability condition holds with $\epsilon > \frac{2}{3}$, then the restricted eigenvalue condition holds with constant $\gamma_n \geq \frac{ (1 - 3(1 -\epsilon))^2 \lambda_{\min}^2}{4s}n$, where $\lambda_{\min} > 0$ is the smallest eigenvalue of $Q^*_{S,S}$, on which the results of \cite{Daneshmand:2014} also depend. +If the irrepresentability condition holds with $\epsilon > \frac{2}{3}$, then +the restricted eigenvalue condition holds with constant $\gamma_n \geq \frac{ +(1 - 3(1 -\epsilon))^2 \lambda_{\min}^2}{4s}n$, where $\lambda_{\min} > 0$ is +the smallest eigenvalue of $Q^*_{S,S}$, on which the results of +\cite{Daneshmand:2014} also depend. \end{proposition} \end{comment} @@ -434,18 +451,36 @@ a correlation between variables. Consider the following simplified example from \cite{vandegeer:2011}: \begin{equation} \nonumber -\left( +\left( \begin{array}{cccc} I_s & \rho J \\ \rho J & I_s \\ \end{array} \right) \end{equation} -where $I_s$ is the $s \times s$ identity matrix, $J$ is the all-ones matrix and $\rho \in \mathbb{R}^+$. It is easy to see that $\nu_{\text{irrepresentable}}(S) = \rho s$ and $\lambda_{\min}(Q) \geq 1 - \rho$, such that for any $\rho > \frac{1}{s}$ and $\rho < 1$, the restricted eigenvalue holds trivially but the (S,s)-irrepresentability does not hold. +where $I_s$ is the $s \times s$ identity matrix, $J$ is the all-ones matrix and +$\rho \in \mathbb{R}^+$. It is easy to see that $\nu_{\text{irrepresentable}}(S) += \rho s$ and $\lambda_{\min}(Q) \geq 1 - \rho$, such that for any $\rho > +\frac{1}{s}$ and $\rho < 1$, the restricted eigenvalue holds trivially but the +(S,s)-irrepresentability does not hold. \begin{lemma} -Let ${\cal C}({\cal M}, \bar {\cal M}^\perp, \theta^*) \defeq \{ \Delta \in \mathbb{R}^p | {\cal R}(\Delta_{\bar {\cal M}^\perp} \leq 3 {\cal R}(\Delta_{\bar {\cal M}} + 4 {\cal R}(\theta^*_{{\cal M}^\perp}) \}$, where $\cal R$ is a \emph{decomposable} regularizer with respect to $({\cal M}, \bar {\cal M}^\perp)$, and $({\cal M}, \bar {\cal M})$ are two subspaces such that ${\cal M} \subseteq \bar {\cal M}$. Suppose that $\exists \kappa_{\cal L} > 0, \; \exists \tau_{\cal L}, \; \forall \Delta \in {\cal C}, \; {\cal L}(\theta^* + \Delta) - {\cal L}(\theta^*) - \langle \Delta {\cal L}(\theta^*), \Delta \rangle \geq \kappa_{\cal L} \|\Delta\|^2 - \tau_{\cal L}^2(\theta^*)$. Let $\Psi({\cal M}) \defeq \sup_{u \in {\cal M} \backslash \{0\}} \frac{{\cal R}(u)}{\|u\|}$. Finally suppose that $\lambda \geq 2 {\cal R}(\nabla {\cal L}(\theta^*))$, where ${\cal R}^*$ is the conjugate of ${\cal R}$. Then: $$\|\hat \theta_\lambda - \theta^* \|^2 \leq 9 \frac{\lambda^2}{\kappa_{\cal L}}\Psi^2(\bar {\cal M}) + \frac{\lambda}{\kappa_{\cal L}}\{2 \tau^2_{\cal L}(\theta^*) + 4 {\cal R}(\theta^*_{{\cal M}^\perp}\}$$ +Let ${\cal C}({\cal M}, \bar {\cal M}^\perp, \theta^*) \defeq \{ \Delta \in +\mathbb{R}^p | {\cal R}(\Delta_{\bar {\cal M}^\perp} \leq 3 {\cal +R}(\Delta_{\bar {\cal M}} + 4 {\cal R}(\theta^*_{{\cal M}^\perp}) \}$, where +$\cal R$ is a \emph{decomposable} regularizer with respect to $({\cal M}, \bar +{\cal M}^\perp)$, and $({\cal M}, \bar {\cal M})$ are two subspaces such that +${\cal M} \subseteq \bar {\cal M}$. Suppose that $\exists \kappa_{\cal L} > 0, +\; \exists \tau_{\cal L}, \; \forall \Delta \in {\cal C}, \; {\cal L}(\theta^* + +\Delta) - {\cal L}(\theta^*) - \langle \Delta {\cal L}(\theta^*), \Delta \rangle +\geq \kappa_{\cal L} \|\Delta\|^2 - \tau_{\cal L}^2(\theta^*)$. Let $\Psi({\cal +M}) \defeq \sup_{u \in {\cal M} \backslash \{0\}} \frac{{\cal R}(u)}{\|u\|}$. +Finally suppose that $\lambda \geq 2 {\cal R}(\nabla {\cal L}(\theta^*))$, where +${\cal R}^*$ is the conjugate of ${\cal R}$. Then: $$\|\hat \theta_\lambda - +\theta^* \|^2 \leq 9 \frac{\lambda^2}{\kappa_{\cal L}}\Psi^2(\bar {\cal M}) + +\frac{\lambda}{\kappa_{\cal L}}\{2 \tau^2_{\cal L}(\theta^*) + 4 {\cal +R}(\theta^*_{{\cal M}^\perp}\}$$ \end{lemma} \subsection{The Independent Cascade Model} |
