diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-03 17:13:00 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-02-03 17:13:00 -0500 |
| commit | 1f293b379aab18f07c958aaa62c96916a6ae61c5 (patch) | |
| tree | 4cc2f6a8638dfd87ee7f19813e5ee4180e5d0ac5 /paper | |
| parent | 9c02dc02474f5e932222d122bf7306e0d16936ce (diff) | |
| download | cascades-1f293b379aab18f07c958aaa62c96916a6ae61c5.tar.gz | |
Concavity condition
Diffstat (limited to 'paper')
| -rw-r--r-- | paper/sections/model.tex | 22 |
1 files changed, 13 insertions, 9 deletions
diff --git a/paper/sections/model.tex b/paper/sections/model.tex index cd7485d..25f55e0 100644 --- a/paper/sections/model.tex +++ b/paper/sections/model.tex @@ -138,7 +138,7 @@ log-likelihood function, we consider the following $\ell_1$-regularized MLE problem: \begin{displaymath} \hat{\Theta} \in \argmax_{\Theta} \frac{1}{n} \mathcal{L}(\Theta\,|\,x^1,\ldots,x^n) - + \lambda\|\Theta\|_1 + - \lambda\|\Theta\|_1 \end{displaymath} where $\lambda$ is the regularization factor which helps at preventing overfitting as well as controlling for the sparsity of the solution. @@ -150,15 +150,19 @@ Since this is equally true for $\|\Theta\|_1$, each column $\theta_i$ of $\Theta$ can be estimated by a separate optimization program: \begin{equation}\label{eq:pre-mle} \hat{\theta}_i \in \argmax_{\theta} \frac{1}{n}\mathcal{L}_i(\theta_i\,|\,x^1,\ldots,x^n) - + \lambda\|\theta_i\|_1 + - \lambda\|\theta_i\|_1 \end{equation} where we denote by ${\cal T}_i$ the time steps at which node $i$ is susceptible and: -\begin{multline} - \mathcal{L}_i(\theta_i\,|\,x^1,\ldots,x^n) = \frac{1}{|{\cal T}_i|} \sum_{t\in {\cal T}_i } x_i^{t+1}\log f(\inprod{\theta_i}{x^{t}}) + \dots \nonumber \\ - (1 - x_i^{t+1})\log\big(1-f(\inprod{\theta_i}{x^t})\big) + \lambda\|\theta_i\|_1 \nonumber -\end{multline} +\begin{multline*} + \mathcal{L}_i(\theta_i\,|\,x^1,\ldots,x^n) = \frac{1}{|{\cal T}_i|} \sum_{t\in {\cal T}_i } x_i^{t+1}\log f(\inprod{\theta_i}{x^{t}}) \\ + + (1 - x_i^{t+1})\log\big(1-f(\inprod{\theta_i}{x^t})\big) +\end{multline*} -Note that in the case of the voter model, TODO horizon time. In the case of the independent cascade model... +A sufficient condition for program~\eqref{eq:pre-mle} to be a convex program is +that $\mathcal{L}_i$ is a concave function. This will be the case if, for +example, $f$ and $(1-f)$ are both log-concave functions. Remember that +a twice-differentiable function $f$ is log concave iff. $f''f \leq f'^2$. It is +easy to verify this property for $f$ and $(1-f)$ in the Independent Cascade +Model and Voter Model. -TODO: discuss conditions on $f$ under which this program is convex. For LC and -VM it is convex. +Note that in the case of the voter model, TODO horizon time. In the case of the independent cascade model... |
