diff options
| author | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-04-30 12:08:57 -0400 |
|---|---|---|
| committer | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-04-30 12:08:57 -0400 |
| commit | 6dcedc33f27f40c23fa7bf456fec09e5f9d0c056 (patch) | |
| tree | d26fd317eff72b552953773475506f646a5f8c13 /paper | |
| parent | 13f312ce5b1201b70375d7cffebc813b25cb35fa (diff) | |
| download | cascades-6dcedc33f27f40c23fa7bf456fec09e5f9d0c056.tar.gz | |
added appendix section
Diffstat (limited to 'paper')
| -rw-r--r-- | paper/paper.tex | 22 | ||||
| -rw-r--r-- | paper/sections/appendix.tex | 45 |
2 files changed, 44 insertions, 23 deletions
diff --git a/paper/paper.tex b/paper/paper.tex index ce8cde9..5311bec 100644 --- a/paper/paper.tex +++ b/paper/paper.tex @@ -12,7 +12,7 @@ % For figures \usepackage{graphicx} % more modern %\usepackage{epsfig} % less modern -\usepackage{subfigure} +\usepackage{subfigure} % For citations \usepackage{natbib} @@ -34,7 +34,7 @@ % Employ the following version of the ``usepackage'' statement for % submitting the draft version of the paper for review. This will set % the note in the first column to ``Under review. Do not distribute.'' -\usepackage{icml2015} +\usepackage{icml2015} % Employ this version of the ``usepackage'' statement after the paper has % been accepted, when creating the final version. This will set the @@ -72,7 +72,7 @@ \newtheorem{proposition}{Proposition} \newtheorem{definition}{Definition} -\begin{document} +\begin{document} \twocolumn[ \icmltitle{Inferring Graphs from Cascades: A Sparse Recovery Framework} @@ -88,17 +88,17 @@ \icmladdress{Their Fantastic Institute, 27182 Exp St., Toronto, ON M6H 2T1 CANADA} -% You may provide any keywords that you -% find helpful for describing your paper; these are used to populate +% You may provide any keywords that you +% find helpful for describing your paper; these are used to populate % the "keywords" metadata in the PDF but will not be shown in the document \icmlkeywords{boring formatting information, machine learning, ICML} \vskip 0.3in ] -\begin{abstract} +\begin{abstract} \input{sections/abstract.tex} -\end{abstract} +\end{abstract} \section{Introduction} \input{sections/intro.tex} @@ -131,12 +131,14 @@ \label{sec:linear_threshold} \input{sections/discussion.tex} -%\section{Appendix} -%\input{sections/appendix.tex} + \newpage \bibliography{sparse} \bibliographystyle{icml2015} -\end{document} +\newpage +\section{Appendix} +\input{sections/appendix.tex} +\end{document} diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex index 2f0162e..ff4c5dd 100644 --- a/paper/sections/appendix.tex +++ b/paper/sections/appendix.tex @@ -1,20 +1,39 @@ -\begin{comment} -\begin{multline*} - \nabla^2 \mathcal{L}(\theta) = - \frac{1}{|\mathcal{T}|}\sum_{t\in \mathcal{T}}x^t(x^t)^T\bigg[ - x_i^{t+1}\frac{f''f - f'^2}{f^2}(\inprod{\theta_i}{x^t})\\ - - (1-x_i^{t+1})\frac{f''(1-f) + f'^2}{(1-f)^2}(\inprod{\theta_i}{x^t})\bigg] -\end{multline*} -\end{comment} +\subsection{Proof for different lemmas} +\subsubsection{Bounded gradient} +\subsubsection{Approximate sparsity proof} +\subsubsection{RE with high probability} -\subsection{Proposition~\ref{prop:irrepresentability}} -In the words and notation of Theorem 9.1 in \cite{vandegeer:2009}: +\subsection{Other continuous time processes binned to ours: prop. hazards model} + +\subsection{Irrepresentability vs. Restricted Eigenvalue Condition} +In the words and notation of Theorem 9.1 in \cite{vandegeer:2009}: \begin{lemma} \label{lemm:irrepresentability_proof} -Let $\phi^2_{\text{compatible}}(L,S) \defeq \min \{ \frac{s \|f_\beta\|^2_2}{\|\beta_S\|^2_1} \ : \ \beta \in {\cal R}(L, S) \}$, where $\|f_\beta\|^2_2 \defeq \{ \beta^T \Sigma \beta \}$ and ${\cal R}(L,S) \defeq \{\beta : \|\beta_{S^c}\|_1 \leq L \|\beta_S\|_1 \neq 0\}$. If $\nu_{\text{irrepresentable}(S,s)} < 1/L$, then $\phi^2_{\text{compatible}}(L,S) \geq (1 - L \nu_{\text{irrepresentable}(S,s)})^2 \lambda_{\min}^2$. +Let $\phi^2_{\text{compatible}}(L,S) \defeq \min \{ \frac{s +\|f_\beta\|^2_2}{\|\beta_S\|^2_1} \ : \ \beta \in {\cal R}(L, S) \}$, where +$\|f_\beta\|^2_2 \defeq \{ \beta^T \Sigma \beta \}$ and ${\cal R}(L,S) \defeq +\{\beta : \|\beta_{S^c}\|_1 \leq L \|\beta_S\|_1 \neq 0\}$. If +$\nu_{\text{irrepresentable}(S,s)} < 1/L$, then $\phi^2_{\text{compatible}}(L,S) +\geq (1 - L \nu_{\text{irrepresentable}(S,s)})^2 \lambda_{\min}^2$. \end{lemma} -Since ${\cal R}(3, S) = {\cal C}$, $\|\beta_S\|_1 \geq \|\beta_S\|_2$, and $\|\beta_S\|_1 \geq \frac{1}{3} \|\beta_{S^c}\|_1$ it is easy to see that $\|\beta_S\|_1 \geq \frac{1}{4} \|\beta\|_2$ and therefore that: $\gamma_n \geq \frac{n}{4s}\phi^2_{\text{compatible}}(3,S)$ +Since ${\cal R}(3, S) = {\cal C}$, $\|\beta_S\|_1 \geq \|\beta_S\|_2$, and +$\|\beta_S\|_1 \geq \frac{1}{3} \|\beta_{S^c}\|_1$ it is easy to see that +$\|\beta_S\|_1 \geq \frac{1}{4} \|\beta\|_2$ and therefore that: $\gamma_n \geq +\frac{n}{4s}\phi^2_{\text{compatible}}(3,S)$ + +Consequently, if $\epsilon > \frac{2}{3}$, then +$\nu_{\text{irrepresentable}(S,s)} < 1/3$ and the conditions of +Lemma~\ref{lemm:irrepresentability_proof} hold. + + + +\subsection{Lower bound for restricted eigenvalues (expected hessian) for +different graphs} + +\subsection{Better asymptotic w.r.t expected hessian} + +\subsection{Confidence intervals?} -Consequently, if $\epsilon > \frac{2}{3}$, then $\nu_{\text{irrepresentable}(S,s)} < 1/3$ and the conditions of Lemma~\ref{lemm:irrepresentability_proof} hold. +\subsection{Active learning} |
