aboutsummaryrefslogtreecommitdiffstats
path: root/poster/Finale_poster/poster.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-12-03 22:19:46 -0500
committerThibaut Horel <thibaut.horel@gmail.com>2015-12-03 22:19:46 -0500
commit51a35b6fe3d55b4ba91cb78de32d9e530011a97a (patch)
tree78954f40fed3802af75bab8886fc644759f56558 /poster/Finale_poster/poster.tex
parentb2e37a91f5ae65a003bb528812a79d6800908de6 (diff)
downloadcascades-51a35b6fe3d55b4ba91cb78de32d9e530011a97a.tar.gz
Poster 98% done
Diffstat (limited to 'poster/Finale_poster/poster.tex')
-rw-r--r--poster/Finale_poster/poster.tex78
1 files changed, 46 insertions, 32 deletions
diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex
index 1365801..7865e18 100644
--- a/poster/Finale_poster/poster.tex
+++ b/poster/Finale_poster/poster.tex
@@ -1,6 +1,6 @@
\documentclass[final]{beamer}
\usepackage[utf8]{inputenc}
-\usepackage[scale=1.8]{beamerposter} % Use the beamerposter package for laying
+\usepackage[scale=1.7]{beamerposter} % Use the beamerposter package for laying
\usetheme{confposter} % Use the confposter theme supplied with this template
\usepackage{framed, amsmath, amsthm, amssymb}
\usepackage{graphicx}
@@ -16,7 +16,7 @@
\newlength{\twocolwid}
\newlength{\threecolwid}
\setlength{\paperwidth}{48in} % A0 width: 46.8in
-\setlength{\paperheight}{40in} % A0 height: 33.1in
+\setlength{\paperheight}{36in} % A0 height: 33.1in
\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between
\setlength{\onecolwid}{0.29\paperwidth} % Width of one column
\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns
@@ -24,7 +24,7 @@
\setlength{\topmargin}{-1in} % Reduce the top margin size
\title{Bayesian and Active Learning for Graph Inference} % Poster title
-\author{Thibaut Horel\and Jean Pouget-Abadie} % Author(s)
+\author{Thibaut Horel\\[0.5em] Jean Pouget-Abadie} % Author(s)
\begin{document}
\setlength{\belowcaptionskip}{2ex} % White space under figures
@@ -44,9 +44,9 @@
\item \textbf{Objective:} learn $\Theta$, matrix of edge weights.
\end{itemize}
\end{block}
-\vspace{1cm}
+\vspace{2cm}
-\begin{block}{\bf Contagion Model~\cite{}}
+\begin{block}{\bf Contagion Model~\cite{Pouget:2015}}
\begin{itemize}
\item $X^t\in\{0,1\}^N$: state of the network at time $t$
\item At $t=0$, $X^0$ drawn from \emph{source distribution}
@@ -67,6 +67,7 @@
\end{center}
\end{figure}
\end{block}
+\vspace{2cm}
\begin{block}{MLE}
\begin{itemize}
@@ -81,7 +82,7 @@
Can be solved efficiently by SGD on $\Theta$.
\vspace{1cm}
\item log-likelihood is concave for common contagion models (\emph{e.g} IC
- model) $\Rightarrow$ provable convergence guarantees (\cite{}).
+ model) $\Rightarrow$ provable convergence guarantees \cite{Netrapalli:2012}.
\end{itemize}
\end{block}
\end{column} % End of the first column
@@ -94,6 +95,7 @@
\begin{block}{Bayesian Framework}
\begin{figure}
\centering
+ \vspace{-1em}
\includegraphics[scale=3]{graphical.pdf}
\end{figure}
{\bf Advantages:}
@@ -113,23 +115,27 @@
\begin{center}--~OR~--\end{center}
\emph{Can we cherry-pick the most relevant part of the dataset?}
+\vspace{0.5em}
{\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty).
-i.e.~maximize information gain per cascade
+i.e.~maximize information gain per observation.
-Baseline heuristic:
+\vspace{0.5em}
+\textbf{Baseline heuristic:}
\begin{itemize}
- \item Choose source proportional to estimated out-degree $\implies$ wider
+ \item Choose source w.p. proportional to estimated out-degree $\implies$ wider
cascades $\implies$ more data
\end{itemize}
-Principled heuristic:
+\vspace{0.5em}
+\textbf{Principled heuristic:}
\begin{itemize}
- \item Choose source proportional to mutual information
- \begin{equation*}
- I((X_t) ,\Theta | x^0 = i) = - H(\Theta | (X_t), X_0 = i) + H(\Theta)
- \end{equation*}
- \item Exact strategy requires knowing true distribution of $(X_t)$
- \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$
+ \item Choose source w.p. proportional to mutual information
+ \begin{multline*}
+ p(i) \propto I\big(\{X_t\}_{t\geq 1} ,\Theta | X^0 = \{i\}\big)\\
+ = H(\Theta) - H\big(\Theta | \{X_t\}_{t\geq 1}, X_0 = \{i\}\big)
+ \end{multline*}
+\item Requires knowing true distribution of $\{X_t\}$ $\Rightarrow$ use current
+ estimate of $\Theta$ instead.
\end{itemize}
\end{block}
\end{column}
@@ -142,34 +148,42 @@ Principled heuristic:
\begin{block}{Implementation}
{\bf Scalable Bayesian Inference}
\begin{itemize}
- \item MCMC (PyMC~\cite{})
- \item VI (BLOCKS~\cite{})
+ \item MCMC: implements the graphical model directly with PyMC
+ \cite{pymc}; does not scale beyond 10 nodes.
+ \item VI: implements variational inference with Blocks~\cite{blocks}.
+ (wip: use Bohning bounds to avoid sampling).
\end{itemize}
- {\bf Scalable Active Learning Criterion}
-Approx.~heuristic:
+ \vspace{1em}
+ {\bf Scalable Active Learning}
+
+ Mutual information is expensive to compute. Instead:
\begin{itemize}
- \item Choose source proportional to mutual information of first step of
- cascade and $\Theta$: Hope for closed-form formula
- \item Intuition:
- \begin{itemize}
- \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X),
- g(Y))$ where $f$ is the trunctation function
- \item First step is most informative~\cite{}
- \end{itemize}
- \item Sum over outgoing-edges' variance as proxy
+ \item use mutual information between $\Theta$ and $X^1$.
+
+ \textbf{Justification} for any $f$:
+ \begin{displaymath}
+ I(X, Y) \geq I\big(f(X)\big)
+ \end{displaymath}
+ in our case: $f$ truncates the cascade at $t=1$.
+
+ (wip: obtain closed-form formula in this case).
+ \item variance is a lower-bound on mutual information $\implies$ pick
+ node $i$ w.p. proportional to $\sum_j \text{Var}(\Theta_{i,j})$.
\end{itemize}
\end{block}
\begin{block}{Results}
-
+ \begin{center}
+ \includegraphics[scale=1.5]{fig.png}
+ \end{center}
\end{block}
\begin{block}{References}
- {\scriptsize \bibliography{../../paper/sparse}
-\bibliographystyle{plain}}
+ {\scriptsize \bibliography{sparse}
+\bibliographystyle{abbrv}}
\end{block}
%-----------------------------------------------------------------------------