diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-12-03 22:19:46 -0500 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-12-03 22:19:46 -0500 |
| commit | 51a35b6fe3d55b4ba91cb78de32d9e530011a97a (patch) | |
| tree | 78954f40fed3802af75bab8886fc644759f56558 /poster/Finale_poster/poster.tex | |
| parent | b2e37a91f5ae65a003bb528812a79d6800908de6 (diff) | |
| download | cascades-51a35b6fe3d55b4ba91cb78de32d9e530011a97a.tar.gz | |
Poster 98% done
Diffstat (limited to 'poster/Finale_poster/poster.tex')
| -rw-r--r-- | poster/Finale_poster/poster.tex | 78 |
1 files changed, 46 insertions, 32 deletions
diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex index 1365801..7865e18 100644 --- a/poster/Finale_poster/poster.tex +++ b/poster/Finale_poster/poster.tex @@ -1,6 +1,6 @@ \documentclass[final]{beamer} \usepackage[utf8]{inputenc} -\usepackage[scale=1.8]{beamerposter} % Use the beamerposter package for laying +\usepackage[scale=1.7]{beamerposter} % Use the beamerposter package for laying \usetheme{confposter} % Use the confposter theme supplied with this template \usepackage{framed, amsmath, amsthm, amssymb} \usepackage{graphicx} @@ -16,7 +16,7 @@ \newlength{\twocolwid} \newlength{\threecolwid} \setlength{\paperwidth}{48in} % A0 width: 46.8in -\setlength{\paperheight}{40in} % A0 height: 33.1in +\setlength{\paperheight}{36in} % A0 height: 33.1in \setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between \setlength{\onecolwid}{0.29\paperwidth} % Width of one column \setlength{\twocolwid}{0.464\paperwidth} % Width of two columns @@ -24,7 +24,7 @@ \setlength{\topmargin}{-1in} % Reduce the top margin size \title{Bayesian and Active Learning for Graph Inference} % Poster title -\author{Thibaut Horel\and Jean Pouget-Abadie} % Author(s) +\author{Thibaut Horel\\[0.5em] Jean Pouget-Abadie} % Author(s) \begin{document} \setlength{\belowcaptionskip}{2ex} % White space under figures @@ -44,9 +44,9 @@ \item \textbf{Objective:} learn $\Theta$, matrix of edge weights. \end{itemize} \end{block} -\vspace{1cm} +\vspace{2cm} -\begin{block}{\bf Contagion Model~\cite{}} +\begin{block}{\bf Contagion Model~\cite{Pouget:2015}} \begin{itemize} \item $X^t\in\{0,1\}^N$: state of the network at time $t$ \item At $t=0$, $X^0$ drawn from \emph{source distribution} @@ -67,6 +67,7 @@ \end{center} \end{figure} \end{block} +\vspace{2cm} \begin{block}{MLE} \begin{itemize} @@ -81,7 +82,7 @@ Can be solved efficiently by SGD on $\Theta$. \vspace{1cm} \item log-likelihood is concave for common contagion models (\emph{e.g} IC - model) $\Rightarrow$ provable convergence guarantees (\cite{}). + model) $\Rightarrow$ provable convergence guarantees \cite{Netrapalli:2012}. \end{itemize} \end{block} \end{column} % End of the first column @@ -94,6 +95,7 @@ \begin{block}{Bayesian Framework} \begin{figure} \centering + \vspace{-1em} \includegraphics[scale=3]{graphical.pdf} \end{figure} {\bf Advantages:} @@ -113,23 +115,27 @@ \begin{center}--~OR~--\end{center} \emph{Can we cherry-pick the most relevant part of the dataset?} +\vspace{0.5em} {\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty). -i.e.~maximize information gain per cascade +i.e.~maximize information gain per observation. -Baseline heuristic: +\vspace{0.5em} +\textbf{Baseline heuristic:} \begin{itemize} - \item Choose source proportional to estimated out-degree $\implies$ wider + \item Choose source w.p. proportional to estimated out-degree $\implies$ wider cascades $\implies$ more data \end{itemize} -Principled heuristic: +\vspace{0.5em} +\textbf{Principled heuristic:} \begin{itemize} - \item Choose source proportional to mutual information - \begin{equation*} - I((X_t) ,\Theta | x^0 = i) = - H(\Theta | (X_t), X_0 = i) + H(\Theta) - \end{equation*} - \item Exact strategy requires knowing true distribution of $(X_t)$ - \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$ + \item Choose source w.p. proportional to mutual information + \begin{multline*} + p(i) \propto I\big(\{X_t\}_{t\geq 1} ,\Theta | X^0 = \{i\}\big)\\ + = H(\Theta) - H\big(\Theta | \{X_t\}_{t\geq 1}, X_0 = \{i\}\big) + \end{multline*} +\item Requires knowing true distribution of $\{X_t\}$ $\Rightarrow$ use current + estimate of $\Theta$ instead. \end{itemize} \end{block} \end{column} @@ -142,34 +148,42 @@ Principled heuristic: \begin{block}{Implementation} {\bf Scalable Bayesian Inference} \begin{itemize} - \item MCMC (PyMC~\cite{}) - \item VI (BLOCKS~\cite{}) + \item MCMC: implements the graphical model directly with PyMC + \cite{pymc}; does not scale beyond 10 nodes. + \item VI: implements variational inference with Blocks~\cite{blocks}. + (wip: use Bohning bounds to avoid sampling). \end{itemize} - {\bf Scalable Active Learning Criterion} -Approx.~heuristic: + \vspace{1em} + {\bf Scalable Active Learning} + + Mutual information is expensive to compute. Instead: \begin{itemize} - \item Choose source proportional to mutual information of first step of - cascade and $\Theta$: Hope for closed-form formula - \item Intuition: - \begin{itemize} - \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X), - g(Y))$ where $f$ is the trunctation function - \item First step is most informative~\cite{} - \end{itemize} - \item Sum over outgoing-edges' variance as proxy + \item use mutual information between $\Theta$ and $X^1$. + + \textbf{Justification} for any $f$: + \begin{displaymath} + I(X, Y) \geq I\big(f(X)\big) + \end{displaymath} + in our case: $f$ truncates the cascade at $t=1$. + + (wip: obtain closed-form formula in this case). + \item variance is a lower-bound on mutual information $\implies$ pick + node $i$ w.p. proportional to $\sum_j \text{Var}(\Theta_{i,j})$. \end{itemize} \end{block} \begin{block}{Results} - + \begin{center} + \includegraphics[scale=1.5]{fig.png} + \end{center} \end{block} \begin{block}{References} - {\scriptsize \bibliography{../../paper/sparse} -\bibliographystyle{plain}} + {\scriptsize \bibliography{sparse} +\bibliographystyle{abbrv}} \end{block} %----------------------------------------------------------------------------- |
