diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-11-29 18:50:34 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-11-29 18:50:34 -0500 |
| commit | 582ea9dade68859e3d863d80a3aeddcb10a4c368 (patch) | |
| tree | af8e010329d9f31a220ba8ffc765f686c769ed37 /simulation/mle_blocks.py | |
| parent | 7322c00eafcde38dadbf9d4f05a1572d627355bf (diff) | |
| download | cascades-582ea9dade68859e3d863d80a3aeddcb10a4c368.tar.gz | |
simple heuristic + star graph + rmse computation
Diffstat (limited to 'simulation/mle_blocks.py')
| -rw-r--r-- | simulation/mle_blocks.py | 95 |
1 files changed, 0 insertions, 95 deletions
diff --git a/simulation/mle_blocks.py b/simulation/mle_blocks.py deleted file mode 100644 index 5acebab..0000000 --- a/simulation/mle_blocks.py +++ /dev/null @@ -1,95 +0,0 @@ -import main as mn -import theano -from theano import tensor as tsr -import blocks -import blocks.algorithms, blocks.main_loop, blocks.extensions.monitoring -import theano.tensor.shared_randomstreams -import picklable_itertools -import numpy as np -from six.moves import range -import fuel -import fuel.datasets -import collections - - -class JeaninuScheme(fuel.schemes.ShuffledScheme): - def get_request_iterator(self): - indices = list(self.indices) - start = np.random.randint(self.batch_size) - batches = list(map( - list, - picklable_itertools.extras.partition_all(self.batch_size, - indices[start:]) - )) - if indices[:start]: - batches.append(indices[:start]) - batches = np.asarray(batches) - return iter(batches[np.random.permutation(len(batches))]) - - -def create_model(n_nodes): - x = tsr.matrix(name='x', dtype='int8') - s = tsr.matrix(name='s', dtype='int8') - params = theano.shared( - .5 + .01 * - np.random.normal(size=(n_nodes, n_nodes)).astype(theano.config.floatX), - name='params' - ) - y = tsr.maximum(tsr.dot(x, params), 1e-5) - infect = tsr.log(1. - tsr.exp(-y[0:-1])) - lkl_pos = tsr.sum(infect * (x[1:] & s[1:])) - lkl_neg = tsr.sum(-y[0:-1] * (~x[1:] & s[1:])) - lkl_mle = lkl_pos + lkl_neg - lkl_mle.name = 'cost' - return x, s, params, lkl_mle - - -def create_random_graph(n_nodes, p=.5): - graph = .5 * np.random.binomial(2, p=.5, size=(n_nodes, n_nodes)) - for k in range(len(graph)): - graph[k, k] = 0 - return np.log(1. / (1 - p * graph)) - - -def create_data_stream(n_cascades, graph, batch_size, shuffle=True): - """ - shuffle (bool): shuffle minibatches but not within minibatch - """ - cascades = mn.build_cascade_list(mn.simulate_cascades(n_cascades, graph), - collapse=True) - x_obs, s_obs = cascades[0], cascades[1] - data_set = fuel.datasets.base.IndexableDataset(collections.OrderedDict( - [('x', x_obs), ('s', s_obs)] - )) - if shuffle: - scheme = JeaninuScheme(len(x_obs), batch_size=batch_size) - else: - scheme = fuel.schemes.SequentialScheme(len(x_obs), - batch_size=batch_size) - return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme) - - -if __name__ == "__main__": - n_cascades = 10000 - batch_size = 1000 - graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]]) - graph = np.log(1. / (1 - .5 * graph)) - print('GRAPH:\n', graph, '\n-------------\n') - - x, s, params, cost = create_model(len(graph)) - - alg = blocks.algorithms.GradientDescent( - cost=-cost, parameters=[params], step_rule=blocks.algorithms.AdaDelta() - ) - data_stream = create_data_stream(n_cascades, graph, batch_size, - shuffle=True) - loop = blocks.main_loop.MainLoop( - alg, data_stream, - extensions=[ - blocks.extensions.FinishAfter(after_n_epochs = 1000), - blocks.extensions.monitoring.TrainingDataMonitoring([cost, params], - after_batch=True), - blocks.extensions.Printing() - ] - ) - loop.run() |
