aboutsummaryrefslogtreecommitdiffstats
path: root/simulation/vi.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-11-22 22:22:34 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-11-22 22:22:34 -0500
commit65638ea7d886c25b8bf75e43a5ce46db2ebbaf53 (patch)
treea2cc54487d224d4d69a3aa7c6a3fe4d1820baceb /simulation/vi.py
parent2a193599c837b5dd12d38b23577b8403a18f2822 (diff)
downloadcascades-65638ea7d886c25b8bf75e43a5ce46db2ebbaf53.tar.gz
first semi working theano version
Diffstat (limited to 'simulation/vi.py')
-rw-r--r--simulation/vi.py26
1 files changed, 16 insertions, 10 deletions
diff --git a/simulation/vi.py b/simulation/vi.py
index 9604c7d..aeccb69 100644
--- a/simulation/vi.py
+++ b/simulation/vi.py
@@ -2,7 +2,10 @@ import time
import main as mn
import autograd.numpy as np
from autograd import grad
+import logging
+logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',
+ level=logging.INFO)
def g(m):
assert (m > 0).all()
@@ -47,29 +50,32 @@ def kl(params1, params0):
grad_kl = grad(kl)
-def sgd(mu1, sig1, mu0, sig0, cascades, n_e=100, lr=lambda t: 1e-2):
+def sgd(mu1, sig1, mu0, sig0, cascades, n_e=100, lr=lambda t: 1e-2, n_print=10):
g_mu1, g_sig1 = grad_kl((mu1, sig1), (mu0, sig0))
for t in xrange(n_e):
lrt = lr(t) # learning rate
mu1, sig1 = mu1 + lrt * g_mu1, sig1 + lrt * g_sig1
- for x, s in zip(*cascades):
+ for step, (x, s) in enumerate(zip(*cascades)):
g_mu1, g_sig1 = grad_ll_full((mu1, sig1), x, s)
mu1 = np.maximum(mu1 + lrt * g_mu1, 0)
sig1 = np.maximum(sig1 + lrt * g_sig1, 1e-3)
- res = np.sum(ll_full((mu1, sig1), x, s) for x, s in zip(*cascades)) + \
- kl((mu1, sig1), (mu0, sig0))
- print("Epoch: {}\t LB: {}\t Time: {}".format(t, res, time.time()))
- print mu1
- print sig1
+ res = np.sum(ll_full((mu1, sig1), x, s) for x, s in zip(*cascades))\
+ + kl((mu1, sig1), (mu0, sig0))
+ if step % n_print == 0:
+ logging.info("Epoch:{}\tStep:{}\tLB:{}\t".format(t, step, res))
+ print mu1[0:2, 0:2]
+ print sig1[0:2, 0:2]
if __name__ == '__main__':
- graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]])
+ #graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]])
+ graph = np.random.binomial(2, p=.2, size=(10, 10))
p = 0.5
graph = np.log(1. / (1 - p * graph))
- cascades = mn.build_cascade_list(mn.simulate_cascades(1000, graph))
+ print(graph[0:2, 0:2])
+ cascades = mn.build_cascade_list(mn.simulate_cascades(500, graph))
mu0, sig0 = (1. + .2 * np.random.normal(size=graph.shape),
1 + .2 * np.random.normal(size=graph.shape))
mu1, sig1 = (1. + .2 * np.random.normal(size=graph.shape),
1 + .2 * np.random.normal(size=graph.shape))
- sgd(mu1, sig1, mu0, sig0, cascades, n_e=30)
+ sgd(mu1, sig1, mu0, sig0, cascades, n_e=30, n_print=1)