diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-11-22 22:22:34 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-11-22 22:22:34 -0500 |
| commit | 65638ea7d886c25b8bf75e43a5ce46db2ebbaf53 (patch) | |
| tree | a2cc54487d224d4d69a3aa7c6a3fe4d1820baceb /simulation/vi_theano.py | |
| parent | 2a193599c837b5dd12d38b23577b8403a18f2822 (diff) | |
| download | cascades-65638ea7d886c25b8bf75e43a5ce46db2ebbaf53.tar.gz | |
first semi working theano version
Diffstat (limited to 'simulation/vi_theano.py')
| -rw-r--r-- | simulation/vi_theano.py | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/simulation/vi_theano.py b/simulation/vi_theano.py new file mode 100644 index 0000000..562fa67 --- /dev/null +++ b/simulation/vi_theano.py @@ -0,0 +1,66 @@ +import main as mn +import theano +from theano import tensor as tsr +import theano.tensor.shared_randomstreams +import numpy as np + +n_cascades = 1000 +n_nodes = 4 +n_samples = 100 +srng = tsr.shared_randomstreams.RandomStreams(seed=123) +lr = 1e-2 +n_epochs = 10 + + +# Declare Theano variables +mu = theano.shared(.5 * np.random.rand(1, n_nodes, n_nodes), name="mu", + broadcastable=(True, False, False)) +sig = theano.shared(.3 * np.random.rand(1, n_nodes, n_nodes), name="sig", + broadcastable=(True, False, False)) +mu0 = theano.shared(.5 * np.random.rand(1, n_nodes, n_nodes), name="mu", + broadcastable=(True, False, False)) +sig0 = theano.shared(.3 * np.random.rand(1, n_nodes, n_nodes), name="sig", + broadcastable=(True, False, False)) +x = tsr.matrix(name='x', dtype='int8') +s = tsr.matrix(name='s', dtype='int8') + +# Construct Theano graph +theta = srng.normal((n_samples, n_nodes, n_nodes)) * sig + mu +y = tsr.clip(tsr.dot(x, theta), 1e-3, 1) +infect = tsr.log(1. - tsr.exp(-y[0:-1])).dimshuffle(1, 0, 2) +lkl_pos = tsr.sum(infect * (x[1:] & s[1:])) / n_samples +lkl_neg = tsr.sum(-y[0:-1].dimshuffle(1, 0, 2) * (~x[1:] & s[1:])) / n_samples + +lkl = lkl_pos + lkl_neg +kl = tsr.sum(tsr.log(sig / sig0) + (sig0**2 + (mu0 - mu)**2)/(2*sig)**2) +res = lkl + kl + +gmu, gsig = theano.gradient.grad(lkl, [mu, sig]) +gmukl, gsigkl = theano.grad(kl, [mu, sig]) + +# Compile into functions +loglkl_full = theano.function([x, s], lkl) +train = theano.function(inputs=[x, s], outputs=res, + updates=((mu, tsr.clip(mu + lr * gmu, 0, 1)), + (sig, tsr.clip(sig + lr * gsig, 1e-3, 1)))) +train_kl = theano.function(inputs=[], outputs=[], + updates=((mu, tsr.clip(mu + lr * gmukl, 0, 1)), + (sig, tsr.clip(sig + lr * gsigkl, 1e-3, 1)))) + + +if __name__ == "__main__": + graph = np.random.binomial(2, p=.2, size=(n_nodes, n_nodes)) + for k in range(len(graph)): + graph[k, k] = 0 + p = 0.5 + graph = np.log(1. / (1 - p * graph)) + cascades = mn.build_cascade_list(mn.simulate_cascades(n_cascades, graph), + collapse=True) + x_obs, s_obs = cascades[0], cascades[1] + for i in range(n_epochs): + train_kl() + for k in xrange(len(x_obs)/100): + cost = train(x_obs[k*100:(k+1)*100], s_obs[k*100:(k+1)*100]) + print(cost) + print(mu.get_value()) + print(graph) |
