diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-02-01 16:33:04 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-02-01 16:33:04 -0500 |
| commit | e8369874088c0ae4b1d98f79f5bae3319de2ac6d (patch) | |
| tree | 1ab49efbcdab69a7eaad354bb869883b769ab9c9 /src/cascade_creation.py | |
| parent | 0991a13214af4023259465f132f09e6c66f3895c (diff) | |
| download | cascades-e8369874088c0ae4b1d98f79f5bae3319de2ac6d.tar.gz | |
updating code to Python 3
Diffstat (limited to 'src/cascade_creation.py')
| -rw-r--r-- | src/cascade_creation.py | 12 |
1 files changed, 7 insertions, 5 deletions
diff --git a/src/cascade_creation.py b/src/cascade_creation.py index 1d77bd2..4c47d8b 100644 --- a/src/cascade_creation.py +++ b/src/cascade_creation.py @@ -1,7 +1,7 @@ import networkx as nx import numpy as np import collections -from itertools import izip +#from itertools import izip from sklearn.preprocessing import normalize class InfluenceGraph(nx.DiGraph): @@ -30,7 +30,7 @@ class InfluenceGraph(nx.DiGraph): def mat(self): if not hasattr(self, '_mat'): self._mat = (self.max_proba * np.random.rand(len(self), len(self)) - * np.asarray(nx.adjacency_matrix(self))) + * np.asarray(nx.adjacency_matrix(self).todense())) return self._mat @property @@ -52,7 +52,7 @@ class Cascade(list): Returns lists of infections times for node i in cascade """ infected_times = [] - for t, infected_set in izip(xrange(len(self)), self): + for t, infected_set in zip(range(len(self)), self): if infected_set[node]: infected_times.append(t) if not infected_times: @@ -96,7 +96,7 @@ def generate_cascades(G, p_init, n_cascades): """ returns list of cascades """"" - return [icc_cascade(G,p_init) for i in xrange(n_cascades)] + return [icc_cascade(G,p_init) for i in range(n_cascades)] def icc_matrixvector_for_node(cascades, node): @@ -116,10 +116,12 @@ def icc_matrixvector_for_node(cascades, node): t_i = cascade.infection_time(node)[0] if t_i != 0: indicator = np.zeros(len(cascade[:t_i])) - if t_i > 0: + if t_i: indicator[-1] = 1 w.append(indicator) M.append(np.array(cascade[:t_i])) + if not M: + print("Node {} was never infected at t != 0".format(node)) M = np.vstack(M) w = np.hstack(w) return M, w |
