aboutsummaryrefslogtreecommitdiffstats
path: root/src/convex_optimization.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 14:05:47 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 14:05:47 -0500
commit71cf5d890df71701d0fd60f1907a1cc63b508cbf (patch)
tree9acbdf7ee08d1ceba8b15e4eac169680ab77bb82 /src/convex_optimization.py
parenta819813ca6c310d84a52de51e7bc49ea8dd8a726 (diff)
downloadcascades-71cf5d890df71701d0fd60f1907a1cc63b508cbf.tar.gz
adding precision_recall curve
Diffstat (limited to 'src/convex_optimization.py')
-rw-r--r--src/convex_optimization.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index 0ff4521..e355bc6 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -80,7 +80,7 @@ def type_lasso(lbda, n_cascades):
return f_x, f_xz
-@timeout.timeout(70)
+@timeout.timeout(10)
def diff_and_opt(M_val, w_val, f_x, f_xz):
if M_val.dtype == bool:
@@ -90,7 +90,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
def F(x=None, z=None):
if x is None:
- return 0, cvxopt.matrix(-.1, (n,1))
+ return 0, cvxopt.matrix(-.001, (n,1))
elif z is None:
y, y_diff = f_x(x, M_val, w_val)
return cvxopt.matrix(float(y), (1, 1)),\